JMP GRR Project: GRR study on process and metrology tools

Presenter: Tongtong Yu. Co-presenter: Jiaping Shen, Jiayi Yang Mentor: Charles

Applied Materials Confidential

2024 JMP China DS-03 PSE GRR

Tongtong Yu (AMAT, Shenzhen) AMC PDC PSE

- Master Degree in Materials Science from Xi'an Jiaotong University.
- 5 years in packaging tool R&D, 2 years in CVD and 5 years in defect inspection and review experience.
- Focus on GRR Analysis using JMP platform

Jiaping Shen (AMAT, Shanghai) AMC East FEP/EPI PSE

- Master's Degree in Materials Science and Engineering from Northwestern University
- Responsible for rapid thermal process and epitaxial Si process
- Enrolled AMAT BB Cert Program
- JMP Instructor and Mentor for 100+ JMP Practitioners
- Attended 2023 JMP China DS Conference
- Presenter GRR Project in 2024 JMP Europe DS Conference

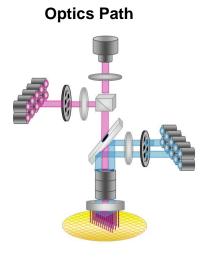
Jiayi Yang (AMAT, Shanghai) AMC East PSE

- Master Degree in Materials Science from Fudan University
- 2-year experience in Rapid Thermal Process, Epitaxial Silicon Deposition, and Ion Implantation Process
- Focus on GRR, SPC and PCA Analysis using JMP platform

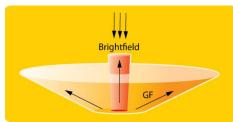
1: GRR Study on OPWI Capture Rate Monitoring

2: GRR Study on Rs Measurement Tool

3: GRR Study on Meas. Q.Time on SiO₂ THK.



1. Optical Wafer Inspection: UVision8[®] Introduction


Innovation

Detection

- Sensitivity thru high illumination
 266nm DUV laser
- Full polarization control in illumination & collection
- Simultaneous Brightfield & Grayfield detection
- High sensitivity & high TPT mode
- Filtering:
 - Multi dimension attribute engine

Bright & Gray Filed

BF & GF Inspection

Value

- ► For full application space
- Application In Fab
 - ▶ $R&D \rightarrow Ramp \rightarrow HVM$

UV8[®] is an Optical Solution for Defect Inspection in R&D and HVM in ICAPS.

1: Proposals Introduction

Motivation:

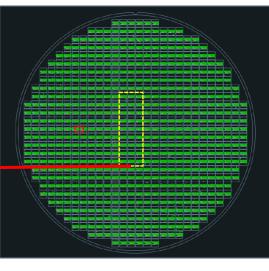
 UV8[®] sensitivity and stability (Capture rate-CR) need to be monitoring during PM interval to guarantee tool performance.

Sampling plan

- Parts: 1 part with 3 dies, totally 9 parts ,sample in wafer center.
- **Repetition:** 10 repetition in each part.
- Reproducibility: Test time- 1d,3d, 7d, 15d and 30d.

Rules for Fast Repeat

- Sequence follow queue time (1d,3d, 7d, 15d and 30d)
- 9 parts at the same queue time
- 10 repeats within the same Part


Criteria:

- P/T ratio: will be selected since Referred to spec (USL,LSL), lower request on parts selection.
- ▶ Spec: 630± 30ea(±4.7%)

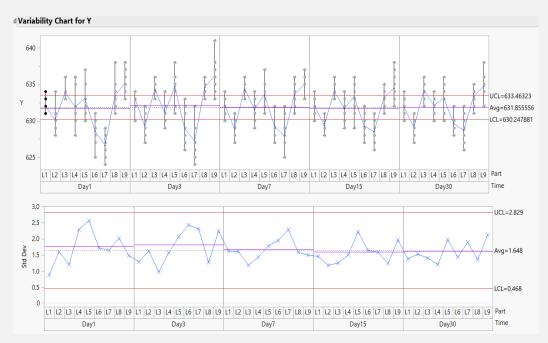
Defect in each part

		Sensi	itivity Spec	s + Result	ts				
Objective & Optics		Defect							
	ah	Result							
	sh_up	Spec	NA	NA	NA	NA	NA	NA	NA
	sh d	Result							
	sn_a	Spec	NA	NA	NA	NA	NA	NA	NA
		Result	1						
BF 100nm	op_up	Spec	0.99	NA	NA	NA	NA	NA	NA
BF TUUNM		Result	1						
	op_d	Spec	0.99	NA	NA	NA	NA	NA	NA
	Int	Result		1	1				
	init	Spec	NA	0.99	0.99	NA	NA	NA	NA
	Prot	Result		1	1				
	FIOL	Spec	NA	0.99	0.99	NA	NA	NA	NA

Parts sample plan

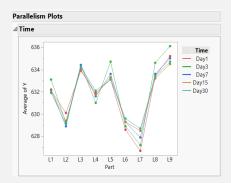
1: GRR Analysis: Crossed

Crossed GRR (ANOVA with interaction)


Gauge R&R

Measurement Source		Variation (6*StdDev)	% of Tolerance		which is 6*sqrt of
Repeatability	(EV)	10.072983	16.79	Equipment Variation	V(Within)
Reproducibility	(AV)	1.645274	2.74	Appraiser Variation	V(Time) + V(Time*Part)
Time		0.795957	1.33		V(Time)
Time*Part		1.439923	2.40		V(Time*Part)
Gauge R&R	(RR)	10.206464	17.01	Measurement Variation	V(Within) + V(Time) + V(Time*Part)
Part Variation	(PV)	13.655811	22.76	Part Variation	V(Part)
Total Variation	(TV)	17.048550	28.41	Total Variation	V(Within) + V(Time) + V(Time*Part) + V(Part)
0.74741 Prec 1 Num 600 Lowe 660 Upp 60 Tole	auge f ision t iber o er Tole er Tole rance	R&R = 100*(RI to Part Variatio	<u>RR/PV</u> n = RR/PV gories = Flc	oor(sqrt(2)*(PV/RR)) -LT)	P/TV=59% P/T=17%

Conclusion:


- PT ratio is preferred to evaluate GRR performance on spec.
 - PT ratio =17%<30%, meaning acceptable measurement error, adequate GRR measurement capability.
- P/TV Ratio is much higher than P/T ratio ,indicating the selected GRR samples selection is too tight.

Variability Chart

Repeatability

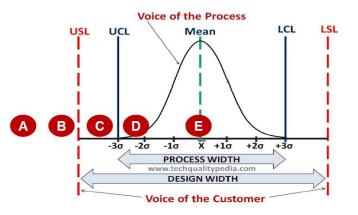
- » >55% points is out of Gauge variation range
- » No OOC in Std DeV chart, 6σ repeatability =9.8<60</p>
- Reproducibility
 - » Five curves are parallel.
 - » Smaller group mean difference(0.46<spec 60)
 - » Little interaction with parts*time

1: GRR Analysis: Misclassification Rate

Misclassification Rate

Misclassification Probabilities

Lower Tolerance = 600, Upper Tolerance = 660, Grand Mean = 631.8556

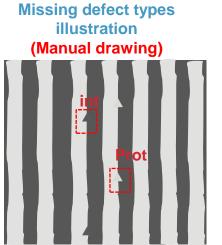

Description	Probability	
P(Good part is falsely rejected)	0.00000000	Alpha risk: Producer Risk
P(Bad part is falsely accepted)		Beta risk: Customer Risk
P(Part is good and is rejected)	0.00000000	
P(Part is bad and is accepted)	0.00000000	
P(Part is good)	1.00000000	

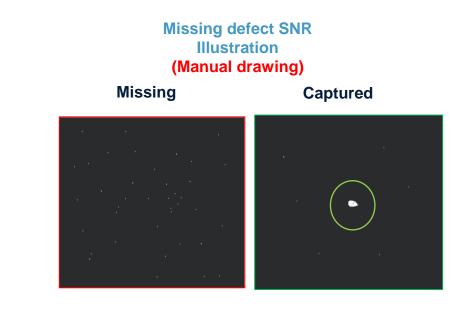
Note: The probability that a part is outside of tolerance is zero.

Conclusion:

- » All measurement targets distribution is tight and measurement value is +/- 11 compared with spec +/- 30
- » Most measurements parts are in Type E area (target area), very tight measurement distribution causes zero Alpha and Beta risk.

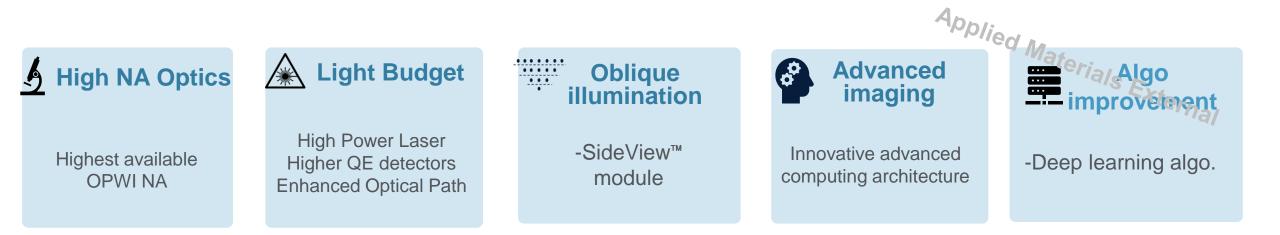
Location	Spec Limit	Control Limit	Target	Alpha Risk	Beta Risk
Α	Way bwyond Spec Range	Way bwyond Control Range	Far Away from the Target	Zero	Very Low
В	Slightly outside Spec Range	Way beyond Control Range	Far Away from the Target	Low	High
С	Inside the Spec Range	Slightly outside the Control Range	Still away from the Target	High	Low
D	Inside the Spec Range	Inside the Control Range	near the Target	Low	Very Low
E	Inside the Spec Range	Inside the Control Range	At the Target	Zero	Zero



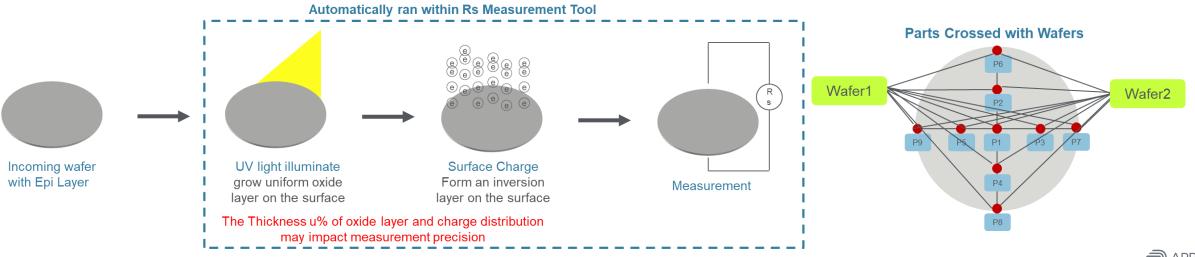

1: Missing Analysis

Missing analysis

- ▶ Missing defects are smaller size (100nm) intrusion and protrusion.
- ▶ Detection challenges are defects SNR is lower, which easily to mix with line roughness in the background.
- Such detection capability and stability is not enough to handle advanced tech nodes.
- ▶ Need to enhance missing defects detection SNR in new platform(Enlight[®]) by using new optical design and new algorithm.



1: New Platform: Enlight[®] Overview


Continuous Improvement Plan

- ► For Enlight[®] with higher sensitivity in advanced tech-node:
 - Design new OTW wafer with smaller and challenging types defects for tool GRR performance monitoring .
 - Perform attribute GRR on defect dimension and type instead of only focusing on total defect counts to identify detection gap root cause, thus improve OPWI products performance and enhance OPWI marketing position.

2: Project Background & Problem Statement

- Problem statement
 - ▶ Rs or Resistivity, measured by lab QCs tool, is a key parameter of Epi films
 - ▶ The unstable measurement precision severely influences Epi process recipe tuning
- Objective
 - ▶ Apply JMP GRR platforms to analyze the measurement GRR capability and stability of lab QCs tool
 - Find out the most unstable measured points
- Sampling Plan
 - Repeatability: 4 repeats per wafer
 - Reproducibility: 2 wafers
 - ▶ Tolerance Spec: 9.8~10.2

2: GRR Performance Analysis: Main effect vs. Crossed

Main Effect (ANOVA without interaction)

Gauge R&R		Gauge R&R			
Measurement Variation % of Source (6*StdDev) Tolerance	which is 6*sqrt of	Measurement Source	Variation (6*StdDev)	Tolerance	which is 6*sqrt of
Repeatability (EV) 0.6686637 167.17 Equipment Variation Reproducibility (AV) 0.0929991 23.25 Appraiser Variation Wafer 0.0929991 23.25 Gauge R&R (RR) 0.6750999 168.77 Measurement Variation Part Variation (PV) 0.7932474 198.31 Part Variation Total Variation (TV) 1.0416340 260.41 Total Variation Summary and Gauge R&R Statistics	V(Within) V(Wafer) V(Wafer)	Repeatability (EV Reproducibility (AV Wafer Wafer*Part Gauge R&R (RR Part Variation (PV Total Variation (TV) 0.2274164 0.1058743 0.2012680) 0.6883415) 0.7679325) 1.0312780	56.85 Appraiser Variation 26.47 50.32 172.09 Measurement Variation 191.98 Part Variation 257.82 Total Variation	V(Within) V(Wafer) + V(Wafer*Part) V(Wafer) V(Wafer*Part) N(Within) + V(Wafer) + V(Wafer*Part) V(Part) V(Within) + V(Wafer) + V(Wafer*Part) + V(Part)
6 k 64.8116 % Gauge R&R = 100*(RR/TV) 0.85106 Precision to Part Variation = RR/PV 1 Number of Distinct Categories = Floor(sqrt(2)*(PV/RR))	P/TV = 66	0.89636 Precision	e R&R = 100*(R n to Part Variatio	R/TV)	
9.8 Lower Tolerance (LT) 10.2 Upper Tolerance (UT) 0.4 Tolerance = UT-LT 1.68775 Precision/Tolerance Ratio = RR/(UT-LT)	Tolerance P/T = 17	0.4 Toleranc	olerance (UT) e = UT-LT	io = RR/(UT-LT)	

Crossed (ANOVA with interaction)

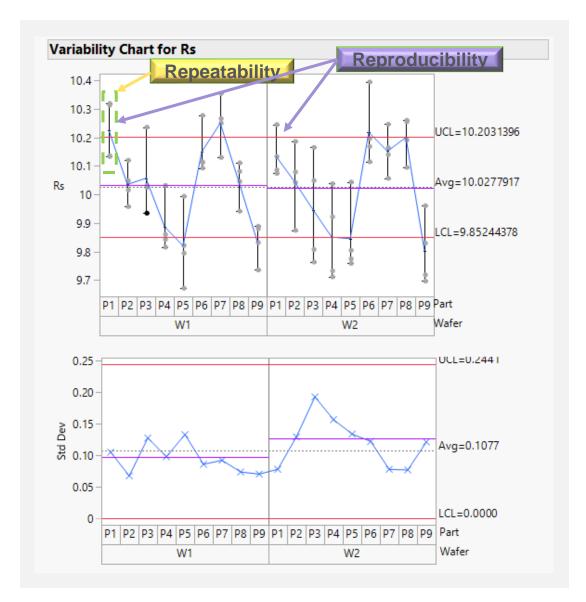
P/T =172%> 30%: poor GRR measurement capability, need to investigate the RC.

2: GRR Root Cause Analysis

Objective

 To find out where we can improve the repeatability and reproducibility

Repeatability

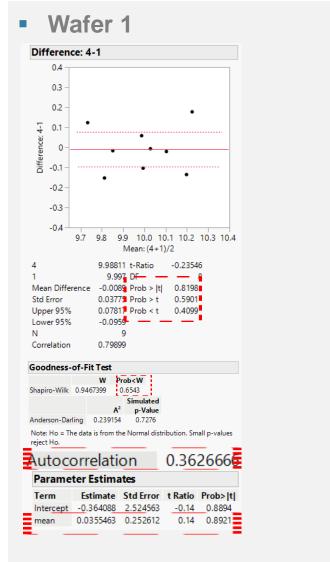

- ▶ No OOC in Std DeV chart, the repeatability is stable for each part
- But the repeatability is too bad, for 6σ=0.6, greater than tolerance(10.2-9.8=0.4)

$$P/T = \frac{6\sqrt{\sigma_{repeatability}^{2} + \sigma_{reproducibility}^{2}}}{Tolerance}$$

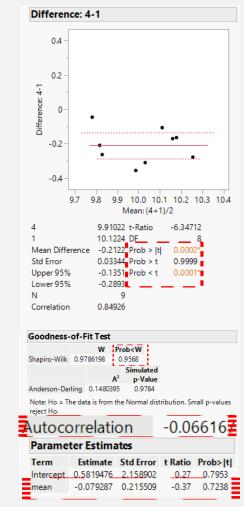
More than 50% of the points fall into the control limit in xBar Chart, indicating the control limit is too wide due to bad repeatability

Reproducibility

Obvious reproducibility issue because the two Rs blue connecting lines of 2 wafers are not parallel with each other


2: Degradation Risk: Replication 1 vs. Replication 4

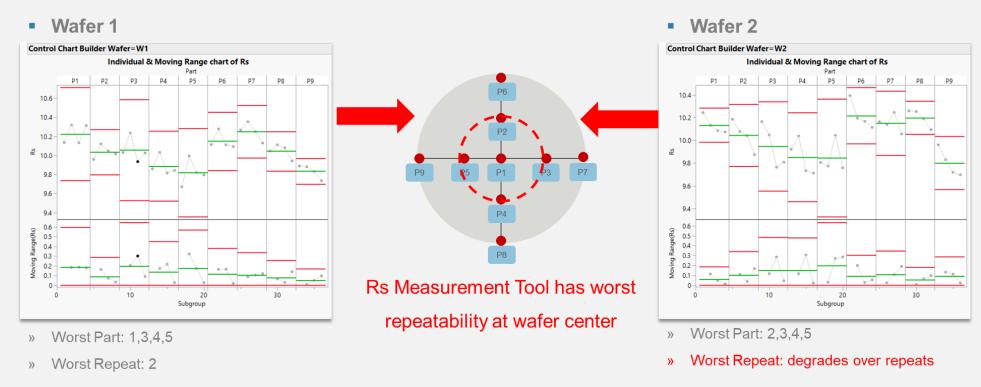
Objective


 Use Matched Pairs to conduct Paired-T test between Replication 1 and Replication 4 for Degradation Risk Evaluation

Results

- Wafer 1 has low Degradation Risk: p>0.05
- Wafer 2 has significant Degradation risk due to paired mean = 0.21, 50% of spec range (9.8~10.2)

• Wafer 2



2: Repeatability Root Cause Analysis: IMR Control Chart by Phase

Objective

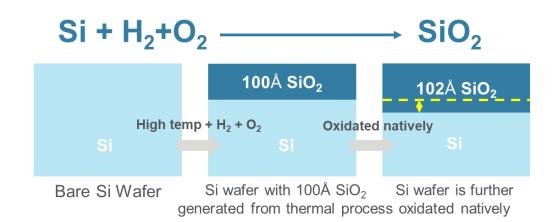
Use IMR Control Chart by Phase to conduct repeatability test only among each part on each wafer; and to see the degradation pattern of Wafer 2 across all parts. Assign Part as Phase, By Wafer

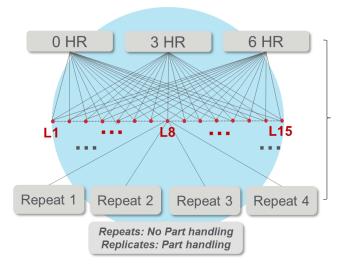
Conclusions

- ▶ Current PT ratio 167%>30%, Indicating metrology issue .
- Root cause : The pretreatment <Oxide layer thickness uniformity and charge distribution uniformity> may be the root cause

3: Project Background & Problem Statement

Problem Statement


Thickness of thermally generated SiO2 would increase over time if not measured timely. It might distort the true thickness, affecting process qualification like uniformity tuning, chamber matching, etc. during Tier2 & Tier3


Objective

 Apply JMP GRR platforms to analyze the measurement GRR capability and stability, and part degradation risk due to Measurement Queue Time

Sampling Plan

- Part: 15 coupon * 1 wafer ~ 15 parts
- Repeatability: 4 repeats for one part one time
- Reproducibility: 0 & 3 & 6 hour
- ► Tolerance spec: LSL-USL = 97-103A for each part
- Fast Repeat

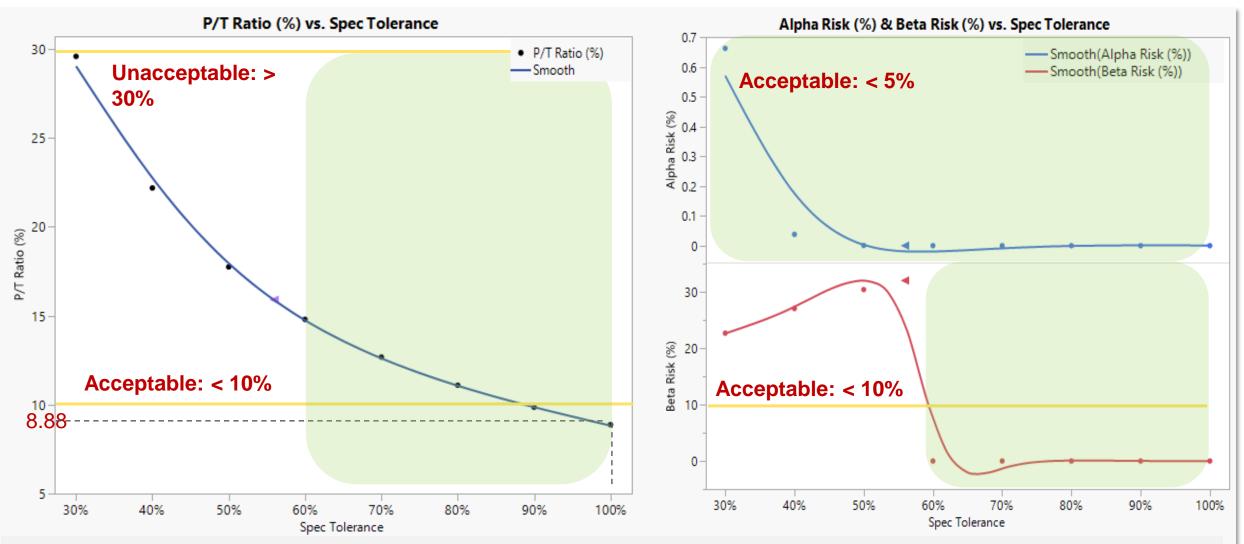
3: GRR Performance Analysis: Main effect vs. Crossed

Main Effect GRR (ANOVA w/o interaction)

Gauge R&R

Measurement		Variation	% of						Measurement		Variation	% of	
Source		(6*StdDev)	Tolerance						Source		(6*StdDev)	Tolerance	
Repeatability	(EV)	0.1009628	1.68	Equipment Variation					Repeatability	(EV)	0.1003660	1.67	Equipment Variation
Reproducibility	(AV)	0.5229593	8.72	Appraiser Variation]				Reproducibility	(AV)	0.5231173	8.72	Appraiser Variation
Q Time		0.5229593	8.72		-				Q Time		0.5229501	8.72	
Gauge R&R	(RR)	0.5326161	8.88	Measurement Variation					Q Time*Part		0.0132243	0.22	
Part Variation	(PV)	1.6004816	26.67	Part Variation					Gauge R&R	(RR)	0.5326584	8.88	Measurement Variation
Total Variation	(TV)	1.6867784	28.11	Total Variation					Part Variation	(PV)	1.6004666	26.67	Part Variation
-Summary and	Gaug	e R&R Statistic	.s						Total Variation	(TV)	1.6867775	28.11	Total Variation
	-								-Summary and	Gaug	e R&R Statistic	cs ———	
6 k		100*/0		,					6 k				
31.5759 % Ga						→		00/			0.0 100*/D		
0.33278 Prec						→	P/TV = 31.5	8%		-	R&R = 100*(R		
4 Num	iber o	f Distinct Cate	gories = Flo	or(sqrt(2)*(PV/RR))			T - I		 0.33281 Pred	ision t	to Part Variatio	on = RR/PV	
1		erance (LT)					Tolerance =	:6	4 Nun	nber o	f Distinct Cate	gories = Flo	or(sqrt(2)*(PV/RR))
103 Upp	er Tole	erance (UT))/	97 Low	er Tole	erance (LT)		
6 Toler	ance	= UT-LT				*	$P/T = 8.88^{\circ}$	70	103 Upp	er Tole	erance (UT)		
0.08877 Prec	ision/	Tolerance Rati	o = RR/(UT-	LT)					6 Tole	rance	= UT-LT		
									0.08878 Prec	ision/	Tolerance Rati	o = RR/(UT-	LT)

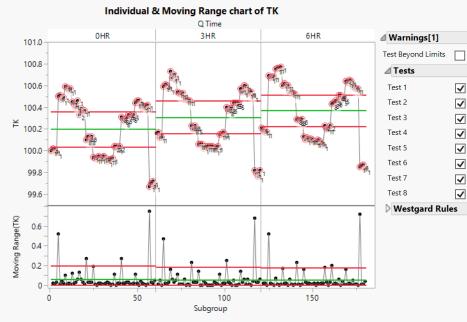
P/TV Ratio is much higher than P/T ratio which may indicate the selected GRR samples are too tight » ANOVA GRR W/WO Interaction Models show similar results since < 1% Interaction variation


Gauge R&R

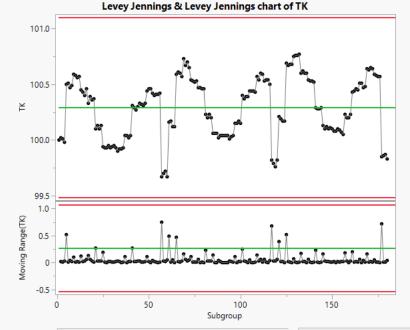
Crossed GRR (ANOVA with interaction)

- » **P/T ratio is preferred** to evaluate the GRR performance on tolerance
 - P/T ratio < 10%: adequate GRR measurement capability

3: P/T ratios, Alpha/Beta Risks vs. Spec Tolerance



With today's Measurement GRR Capability, we can tighten Tolerance Range by 40% from 6 to 3.6 while keeping P/T Ratio around 15% (competitive advantage)


3: Use Control Limits to Conduct the Mis-Classification Risks

Control Limits from I-MR chart (by phase)

TK Limit Su	mmarie	s					Misclassification Probabili	ities
Points plotted	Q Time	l	.CL Avg	UCL	Limits Sigma		Lower Tolerance = 100.0371, Upp	
Individual Individual Individual Moving Range Moving Range Moving Range	3HR	100.03 100.13 <u>100.2</u> 3	371 100.198 583 100.3088 258 100.37 0 0.060508 0 0.05661	100.3589 100.4593 100.5142 0.197653 0.184919	Moving Range Moving Range Moving Range Noving Range Moving Range Moving Range		Description P(Good part is falsely rejected P(Bad part is falsely accepted) Lower Tolerance = 100.1583, Upp Description	
Alarm Re			0 0.034237	0.177100	Moving Kange		P(Good part is falsely rejected P(Bad part is falsely accepted)	0.04607137 0.03320448
Position	Total Sar Out of Co		Alarm Rate		\backslash	<u>.</u>	Lower Tolerance = 100.2258, Upp	per Tolerance = 100.5142
1 2		179 0	0.994444 0			*	Description P(Good part is falsely rejected	Probability 0.03605981
Position V	Warnings `	Tested					P(Bad part is falsely accepted	0.02376130
1 T 2	lest 1, Test	t 2, Test	3, Test 4, Test 5	i, Test 6, Te	st 7, Test 8			

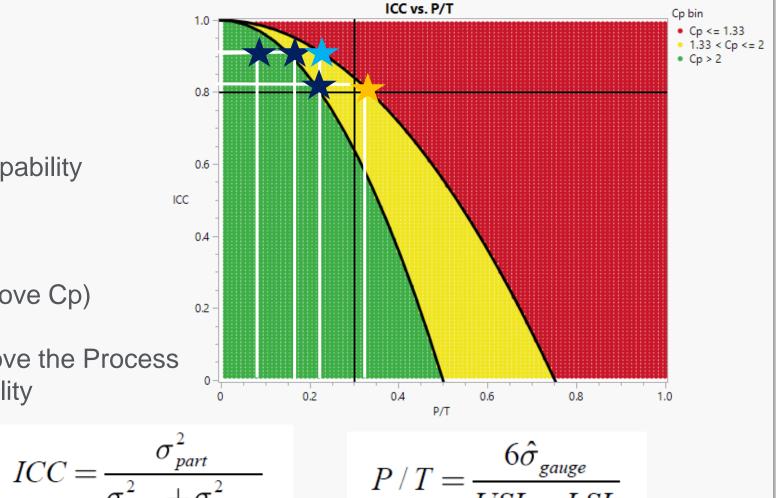
Control Limits from Levey Jennings Chart

Points				
plotted	LCL	Avg	UCL	imits Sigma Levey Jennings
Individual	99.48641	100.2923	101.0981	Levey Jennings
Moving Range	-0.53724	0.268621	1.074485	evey Jennings

Misclassification Probabilities

- I-MR CL: Alpha/Beta risks: <5%
- Levey CL: Alpha/Beta risks: 0%/26%

3: Continuous Improvement (Competitive Advantage)

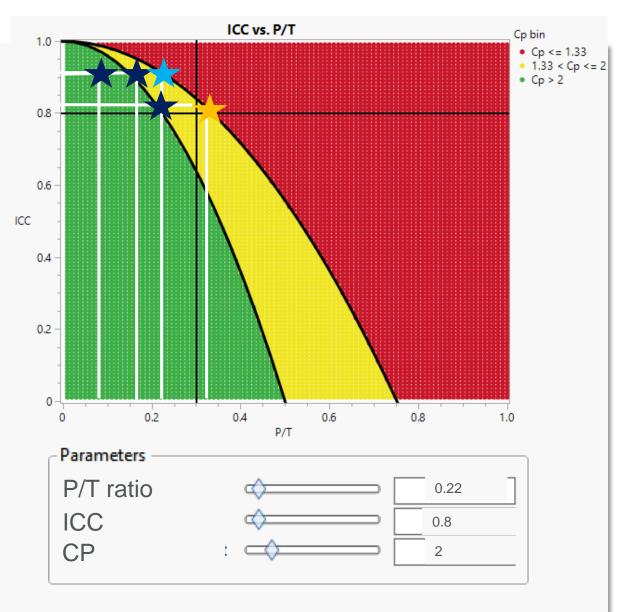

Continuously improve GRR and Ppk

 \star When Cp >= 2, P/T < 0.3 => Tighten Spec until Cp=1.33

★ When Cp <= 1.33, P/T < 0.3 => Improve Process Part-Part Capability (Reduce ICC) until Cp = 2

+ When Cp <= 1.33, P/T > 0.3 => Improve GRR < 0.3 (also improve Cp)

Iteratively and continuously improve the Process **Capability and Measurement Capability**


3: Profiler Development

Background

Need to digest continuous improvement direction, but current calculations are manual, lower efficiency

Possible Features

- Profiler free adjustment function.
- Provide auto optimization suggestion basing on current PT ratio and ICC data to reach CP>2 target:
 - If CP> 2, what is the prolife suggestion?
 - If Cp <= 1.33, P/T < 0.3 what is the prolife suggestion?
 - If Cp <= 1.33, P/T > 0.3 what is the prolife suggestion?

- ...

