Dynamic JMP Dashboard for optimizing tool maintenance in Semiconductor Processes

Neha Kaushal, Sreevidya P V

Applied Materials External

Abstract

Title:

Dynamic JMP Dashboard for optimizing tool maintenance in Semiconductor Processes Abstract:

In the semiconductor industry, because of ongoing customer demand for lower cost devices, tool log data analysis is important for efficient tool usage. Deploying Tech Enabled services with JMP® (SAS institute) visualization tools allow us to become more efficient in responding to maintenance events. Analyzing the process runs using JMP distribution, histogram, and boxplot options helps to focus on the problem areas and reduce the maintenance duration. Wilcoxon non-parametric test is applied to perform hypothesis study on the tool down duration to check variation with respect to target and to determine the confidence interval for maintenance events. JMP quality and control Pareto plot and Ishikawa cause and effect diagram is implemented for root cause analysis and action plans. Dynamic JMP dashboard displaying box plot along with the above performance tests facilitated for better planning of maintenance activities and assigning priority. Dependency of PM success and failure on PM types were reported by quick visualization from JMP Dashboard.

Dynamic JMP Dashboard for optimizing tool maintenance in Semiconductor Processes

Introduction

Methods & Objectives

•

٠

٠

.

٠

- In the semiconductor industry, deploying tech enabled services enable efficient tool usage. Accordingly, minimizing tool down time is a high value problem.
- Optimizing the Preventive Maintenance(PM) duration on tool is a key driver for enhanced tool performance
- Better PM Services = Better Yield = Higher customer satisfaction
- JMP® (SAS institute) visualization tools is one of the reliable platforms for statistical exploration.
- Dynamic JMP dashboard displaying performance tests can facilitate better planning of PM activities.

- Objective is to identify the improvement opportunities in Production Down Time during different types of PMs
- To prioritize the tools for optimizing PM procedures, down time for different tools are studied from the log data using JMP graph builder
- Next, the distribution models are fitted to identify the deviation from normality.
- Non-parametric ANOVA approach is applied to perform hypothesis study to check variation among four PM events.
- A quick and interactive dashboard is developed for analyzing tool down time with PM performance

Results

Click graphs to enlarge

Conclusions

- First-time PM success has high impact on Minor PMs
- First-time PM success has negligible impact on Major PMs
 - Median PM duration of First-time PM Success & Fail are equivalent
- Next step is Tool wise analysis to identify the scope of improvement
- 3 | Applied Materials External

References & Acknowledgements

- Thanks to the below people for helping and supporting the study:
- Charles C Chen
- Chandrasekhar Roy, Vikas Jangra, Sidda Reddy Kurakula References:
- 1. Statistical Thinking for Industrial Problem Solving (STIPS) Course
- https://www.jmp.com/en_in/online-statistics-course.html

Tool Down %

ToolA has highest Tool Down % - Top priority tool for improvement

Box plot

PM Duration(hrs)

ToolE has a greater number of data points on the upper side; needs process control

Distribution Model fitting

 Summary Sta 	atistics
Mean	25.874778
Std Dev	25.97823
Skewness	5.6878925
Kurtosis	39.984869
Autocorrelation	-0.00345
Median	19.351259
Interquartile Range	12.688298
Robust Mean	22.151823

 Fitted N 	lorr	nal Dist	ribut	ion				
Parameter		Estimate	Std	Error	Lower 95	% Up	oper 95%	
Location	μ2	5.874778	1.735	7435	22.45421	19 2	9.295336	
Dispersion	σ	25.97823	1.231	4862	23.77470	6 2	8.635456	
Measures								
2*LogLikelih	ood	2093.93	64					
AICc		2097.99	07					
BIC		2104.75	97					
Goodnes	ss-(of-Fit Te	st					
		W	Pro	ob <w< td=""><td></td><td></td><td></td><td></td></w<>				
Shapiro-W	ilk	0.4497015	5 <,	0001*				
				Simul	ated			
			A ²	p-V	alue			
Anderson-	Darl	ing 32.6	20314	<.00	001*			
Note: Ho = reject Ho.	= Th Cau	e data is fr J chy Dis	om the	e Norma	al distribut	tion. S	mall p-val	ues
Deservator		E-theorem			1 0	E 0/ 1	I 059	/
Parameter		10 12010	e Sto	700421	17 221	376 (011	10.07000	1
Scale	μ	4 506120	6 0.4	00451	2 772	911 644	5 2020/1	0
Manguran	0	4.500120	0 0.4	000019	5.112		5.565641	0
-2*LogLikeli	ihor	d 1731 5	120					
		1735.5	681					
BIC		1742.3	371					
⊿ Goodn	ess	-of-Fit T	est					
				Sim	ulated			
			A	² D-	Value			
Andersor	n-Da	rling 11.	483636	5 0.	0920			
Note: Ho reject Ho	o = T	'he data is	from t	he Cau	chy distrib	ution.	Small p-va	alu

As dataset is right skewed, Cauchy is the best fit

6

Outliers and Dashboard

Explore Outlie	ers			
Commands				
Robust Fit Out	liers			
Outliers are K spre Huber Cauchy Quartile K Sigma 5 Rescan Close	ads from the	center.		
Outliers by Colum Show only co Select columns ar Identify Outliers Select Rows Exclude Rows	on Outliers olumns with o nd choose an in Table Color Cells Color Rows	by Cell outliers action. Clear Out Add to M Char	iers in Table lissing Value Codes nge to Missing	Formula Columns Formula Script
Column	Cauchy Center	Cauchy Spread	Cauchy N Outliers	
PM Duration(hrs)	18.130054	6.7591397	11	

11 Outlier points found for root cause analysis

Non-parametric test

Nonparam	netrio	Comparisons	For Each Pa	air Using W	licoxon l	Method				
q*	Alph	a								
1.95996	0.0	5								
Level		- Level	Score Mean Difference	Std Err Dif	z	p-Value	Hodges- Lehmann	Lower CL	Upper CL	Difference Plot
MinorPM_Fai	I	MajorPM_Success	-4.1693	5.291887	-0.78786	0.4308	-1.1924	-5.0221	2.22141	
MajorPM_Suc	cess	MajorPM_Fail	-8.5998	4.900823	-1.75477	0.0793	-5.5315	-13.3967	0.72632	
MinorPM_Fai		MajorPM_Fail	-11.2262	4.948812	-2.26846	0.0233*	-7.3543	-14.8148	-0.86843	
MinorPM_Su	ccess	MinorPM_Fail	-28.5576	8.154676	-3.50200	0.0005*	-4.1061	-6.3593	-1.82411	
MinorPM_Su	ccess	MajorPM_Success	-33.3114	8.174459	-4.07506	<.0001*	-5.3593	-8.3490	-2.74757	
MinorPM_Su	ccess	MajorPM_Fail	-41.8923	8.742555	-4.79177	<.0001*	-11.6136	-17.9144	-6.30475	

•

Wilcoxon / Kruskal-Wallis Tests (Rank Sums)

Level	Count	Score Sum	Expected Score	Score Mean	(Mean-Mean0)/Std0
MajorPM_Fail	27	4278.00	3037.50	158.444	3.927
MajorPM_Success	41	5564.00	4612.50	135.707	2.535
MinorPM_Fail	42	5330.00	4725.00	126.905	1.597
MinorPM_Success	114	10028.0	12825.0	87.965	-5.767

Kruskal-Wallis Test, ChiSquare Approximation

ChiSquare	DF	Prob>ChiSq
37.2418	3	<.0001*

Median Test (Number of Points Above Median)

Level	Count	Score Sum	Expected Score	Score Mean	(Mean-Mean0)/Std0
MajorPM_Fail	27	22.000	13.500	0.814815	3.481
MajorPM_Success	41	27.000	20.500	0.658537	2.241
MinorPM_Fail	42	26.000	21.000	0.619048	1.708
MinorPM_Success	114	37.000	57.000	0.324561	-5.334

I-Way Test, ChiSquare Approximation

ChiSquare	DF	Prob>ChiSq
31.1022	3	<.0001*

Van der Waerden Test (Normal Quantiles)

Level	Count	Score Sum	Expected Score	Score Mean	(Mean-Mean0)/Std0
MajorPM_Fail	27	19.644	0.000	0.72757	4.107
MajorPM_Success	41	13.786	0.000	0.33625	2.427
MinorPM_Fail	42	8.565	0.000	0.20394	1.494
MinorPM_Success	114	-41.996	0.000	-0.36838	-5.719

I-Way Test, ChiSquare Approximation

ChiSquare DF Prob>ChiSq 37.5238 <.0001*

MinorPM_Success and MinorPM_Fail are significantly different based on p-value

Applied Materials External 8

MajorPM Success and MajorPM_Fail are not significantly different based on p-value

Dashboard

Quick reporting on dependency of PM success and failure on PM types

APPLIED MATERIALS® make possible