Predicting Effluents from Glass Melting Process for Sustainable Zero-Waste

Modeling of continuous process with sparse batch sampling of filter dust

Dr Drejc Kopac (<u>drejc.kopac@culmium.com</u>)

Matej Emin (matej.emin@culmium.com)

Dr Philip Ramsey (philip.ramsey@predictum.com)

Overview

- Extra white flint glass SeO2 content vital
- SeO2 is highly volatile (60-80% loss) and is captured by the filter
- Filter dust is a hazardous waste, disposal is expensive
- Enabling circular production: if SeO2 concentration is known, the dust can be recycled in the furnace
- Chemical analyses are expensive and time consuming. Possible solution: predictive modeling
- The glass manufacturing process is continuous with 1-minute sensor readings
- 40+ on-line sensors measure various temperatures, gas consumption, heater power, glass pull rate, etc.
- Challenge: predict SeO2 content in a dust sample based on sparse sampling on different time scale and many parameters

Initial data collection and screening

- Historical data overview (over 1 year)
- Identification of influential parameters with data screening and SME brainstorming
- Distributions and multivariate analysis platforms -> determine correlations, cross-correlations, and non-influential parameters (missing, unique, etc.)

Initial data collection and screening

- X-Y graphs to understand behavior
- 20-minute interval between switching burner side (left/right)
- Most of the short-term variability occurs during this 20-minute interval

Auto-correlation and delay using "Time series"

- SeO2 evaporation is rapid once the raw material touches the hot melt
- Effluent transition time from melt to filter: ~15 s
- Dust extraction time from filter: ~ 1 min

Dust collection plan

- Based on subject-matter expertise and previous tests, one of the most influential parameters for the SeO2 content should be the glass pull rate
- Based on the glass manufacturer **monthly pull rate plan**, the optimal **dates for dust collection** were chosen
- Targeting min, max, and middle pull rate, to optimally cover the parameter space

Dust sampling

- Dust is collected and homogenized
- Sent to external institute for ICP-OES analysis -> known SeO2 content per batch

Simple model

- ICP-OES determined SeO2 content:
 - 9 data points from 20-minute Culmium sampling (time well known, homogenized dust)
 - **5 data points** from various big-bags sampling (date+time only approximate)
- Using only 3 parameters which are approximately constant during dust sampling (taking median values)
 - Natural gas flow used for heating [Nm3/h]
 - Glass pull rate from the glass melting furnace [t/day]
 - Power on electrical heaters [W]
- Using a simple modeling technique (std least squares) with 2nd order interactions

Simple model – std least squares, 3 parameters

Effect Summary

Source	Logworth		PValue
Mean Power	5.114		0.00001
Mean ZP	5.023		0.00001
Mean Power*Mean PR	3.300		0.00050
Mean ZP*Mean PR	3.145		0.00072
Mean PR	1.567		0.02708 ^
Remove Add Edit Und	o 🗌 FDR 🛛	'^' denotes effects with containing effe	ects above them

- Simple model does not predict new measurements very well (physically unrealistic predictions)
- Various other parameters could affect the SeO2 level in the filter dust (e.g., furnace temperatures)
- Prediction profiler indicated large uncertainty at extreme values
- More process parameters need to be considered in the model, but **only 9 measurements** are available
- Could the info on process variation bring additional information to the existing dataset?
- Additional parameters might be influential, but dataset is too scarce, needs to be expanded to be used

Adding information to the dataset

- SeO2 determination has a measurement uncertainty (+/- 200 ppm @ 95% CI)
- For each 20 minute sampling interval -> 18 individual sensor readings available (excluding 2 minutes during the burner switch), with the underlying distributions:

- Given the distribution means (median) and dispersions, we can randomly pick values from the parent populations, thus generating a synthetic dataset using a **Monte Carlo (MC) approach**
- Together with process experts we consider 13 input parameters, which are normally distributed during dust sampling periods and have no outliers, no strange artefacts, and no short-term temporal drifts
- MC simulations must consider parameter correlations via covariance matrices

MC simulations – covariance matrix

- For each dust sampling, the corresponding covariance matrix is generated from data during dust collection interval
- We exported the covariance matrix and used python (numpy multivariate_normal method) to generate multidimensional normal distributions, taking covariances into account

Synthetic dataset modeling

- Using covariance matrices, 500 synthetic values for each chosen sample with known SeO2 content are generated
- 9 trustworthy samples + 1 additional measurement from big-bag sampling with very low SeO2 content (to extend the parameters space towards low SeO2 values)
- Using a simple neural network (3 TanH functions, 1 hidden layer) to model the synthetic dataset

- Model Launch
- Model NTanH(3)

Synthetic dataset modeling

For prediction validation, additional measurements of SeO2 in dust samples from big-bag sampling were used

	Tag	Validation	Meritev	Vreca - vzorec	Mean(Date+Time)	Median(PR)	Actual SeO2 IGR	Predicted SeO2 IGR	Predicted SeO2 IGR (no covariance)
	Training	1 1	l .	1-1	23 05 2022	157	0.54	0.54	0.78
	Validation	1	1-1	1-3					
		1	1-3	4-1					
		2	2	5-1					
			3 19 othoro	5-3 2 others					
		0	12 others	2 others	27 10 2021	109	0.37	0.37	0.095
• 1	Training	0	1		27 10 2021 12:50	148.31712	0.54	0.539655148	0.4460315177
• 2	Training	0 2	2		27 10 2021 15:34	148.31712	0.53	0.5308072358	0.7615582288
• 3	Training	0	3		27 10 2021 15:54	148.31712	0.53	0.5300398664	0.7751513624
• 4	Training	0 4	4		29 10 2021 13:58	154.3391	0.5	0.5002547579	0.5693055114
• 5	Training	0 5	5		29 10 2021 14:18	154.3391	0.5	0.499798521	0.5807976746
• 6	Training	0 6	6		10 11 2021 11:04	157.0896	0.53	0.5314731767	0.476936639
• 7	Training	0	7		10 11 2021 11:25	157.0896	0.54	0.5407084003	0.4195303983
• 8	Training	0 8	8		25 11 2021 18:43	108.9791	0.44	0.4395317694	0.4957211272
• 9	Training	0 9	9		25 11 2021 19:03	108.9791	0.43	0.4298490467	0.5060467358
10	Validat	1	1-3	1-3	12 05 2022 20:16	144.2419 ⁻	0.42	0.4999983473	0.5725768166
• 11	Training	0	4-4		15 05 2022 03:11	144.06912	0.37	0.3685427824	0.5009021572
12	Validat	1 5	5-3	5-3	15 05 2022 22:46	144.06912	0.37	0.3753195089	0.2380037006
⊗ 😎 13	Validat	1 (6-3	6-3	•		0.38	•	•
14	Validat	1	7-4	7-4	22 05 2022 21:13	146.8224	0.42	0.3841568466	0.1707579696
15	Validat	1	1-1	1-1	13 05 2022 04:27	144.2419 ⁻	0.41	0.4874607197	0.539133005
16	Validat	1 4	4-1	4-1	15 05 2022 13:25	144.06912	0.37	0.4135389822	0.0952703526
17	Validat	1 5	5-1	5-1	16 05 2022 04:55	144.06912	0.37	0.406577133	0.2341834666
⊗ छ 18	Validat	1 (6-1	6-1	•		0.37	•	•
19	Validat	1	7-1	7-1	23 05 2022 08:27	149.990	0.43	0.4359921694	0.4018419192

Neural model

- Validation with new sampling
- Only 1 big-bag (nr. 1) is significantly overpredicted
- Actual by Predicted
 R² = 0.86

Model profiler and simulator

Predicted SeO2 IGR 3

	Compare Distributions			Quantiles			▼ ▼ Fitted Normal 2 Mixture Distribution					
	Show Distribution	AICc ^	BIC	-2*LogLikelihood	100.0%	maximum	0.55547561	Parameter		Estimate	Lower 95%	Upper 95%
	Normal 2 Mixture ———	-49075.95	-49039.9	-49085.95	99.5%		0.5377955	Location	μ1	0.4669502	0.4666426	0.4672577
					97.5%		0.52695358	Location	μ2	0.5054775	0.5048953	0.5060597
					90.0%		0.51139431	Dispersion	σ1	0.0133514	0.0130475	0.0136624
					75.0%	quartile	0.49133397	Dispersion	σ2	0.0156087	0.015038	0.0162011
						median	0.473391	Probability	π1	0.7237826	0.7068018	0.7401416
					25.0%	25.0% quartile 0.46138594 Probability	π2	0.2762174	0.2660351	0.2866372		
	Simulator for prodiction coattor		attor	10.0%	0.452298		Measures					
	Simulator for p	euici		allei	2.5%		0.44292856	-2*LogLikeli	ihooc	-49085.95	5	
0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56					0.5%		0.43453752	AICc		-49075.95	5	
						minimum	0.41797497	BIC		-49039.9)	

No correlation/ covariance

- What if we do not consider correlation/covariance of params with MC simulations?
- Model is inappropriate, with non-physical predictions
- The span of predicted SeO2 values is unrealistic
- Actual by Predicted R² = 0.37

No correlation/ covariance

- Comparison of "Actual by predicted" plots
- Taking covariances into account shows much more realistic predictions for SeO2

Conclusion

- Despite sparse dust sampling and small dataset, we derived a useful predictive model for SeO2 concentration in filter dust
- Monte Carlo approach required, considering the complexity of the process
- Predictive power of the model was tested new dust sampling and showed realistic, practically useful predictions
- Approach led to a 100% return of the waste filter dust in a pilot attempt, thereby replacing 60% of an expensive primary raw material for glass decolorization, and completely removing the cost of filter dust disposal

Appendix

Neural model

- Prediction is consistent even when taking different random seeds
- Big-bag nr. 1 is slightly over- or underpredicted in most cases

Partial Least Squares (vs neural network)

- Testing Partial Least Squares on original (nonsimulated) dataset (10 data points for training, 13 params):
- Partial Least Squares model shows worse predictive power
- Actual by Predicted plot for validation data is "poor"
- Profiler shows somehow similar behaviour and influence of parameters, but only in linear regime

