## **QN** Immediate Fix Cycle Time Analysis

Raisa Huang

2

Root Cause Analysis of QN Fix Cycle time

Graphical Root Cause Analysis Summary

Compare Fit Model, Partition, Neural Model

Hybrid Text Mining & Data Mining Analysis

Take Away Learnings

#### <sup>3</sup> Histogram – 1<sup>st</sup> Layer of Root Cause Analysis of QN Fix Cycle time

What scenarios impact on QN fix cycle time? The impact is endurable?

SA

- Criteria: within 5 days (In spec, success analysis); over 5 days (out of spec ,failure analysis)
- Use Histogram Conditional Mosaic Plot to conduct both Success Analysis and Failure Analysis



Graph Builder Box Plot – 2<sup>nd</sup> Layer of Root Cause Analysis

- Plot continuous fix cycle time vs. nested structure(categorical country X<sub>3</sub> under containment X<sub>2</sub>)
  - » The cycle time of Replacement is much longer than other containment actions
  - » Containment should be one of important factors to impact on fix cycle time



#### Graph Builder Heatmap – 3<sup>rd</sup> Layer of Root Cause Analysis

- Add **back categorical** "defect type (X<sub>1</sub>)" on Y axis, color for fix cycle time
- Use 8 x 9 layout (balanced) to quickly catch out the max / min cycle time scenarios
  - Replacing TW Damage parts is the worst case for cycle time
  - **Replacing USA Dimension** issue parts is the 2<sup>nd</sup> worst scenario.



#### Pareto Chart – 4<sup>th</sup> Layer of Root Cause Analysis

- Add additional factor "**workstation** (X<sub>4</sub>)" in Pareto Chart to visualize frequency event
  - Replacing TW damage & CVD-SF
  - Replacing USA Dimension & CVD-Lid

» Per previous inference : Except for Dimension and Damage, other defects are easy to quickly fix





#### Tabulate – 5<sup>th</sup> Layer of Root Cause Analysis

- Show average and count on Tabulate table to do further comparison
- FA: CVD-SF Replacement TW damage issue

7

SA: CVD-MT MFG rework USA Workmanship issue

|              |         |        |      | immedia | nte f | ix cycle | time  |        |    |        |         |        |            |     |
|--------------|---------|--------|------|---------|-------|----------|-------|--------|----|--------|---------|--------|------------|-----|
| Work Station |         |        |      |         |       |          |       |        |    |        |         |        |            |     |
|              |         |        | CVD  | -LID    |       |          | CVD   | )-SF   |    |        |         |        |            |     |
|              |         | D      | efec | t type  |       |          | Defec | t type |    |        |         |        |            |     |
|              |         | Dimens | ion  | Damag   | je    | Dimen    | sion  | Damag  | je |        | immedia | ite fi | c cycle ti | me  |
| Containment  | Country | Mean   | Ν    | Mean    | Ν     | Mear     | N     | Mean   | Ν  |        | W       | ork St | tation     |     |
| Replacement  | TW      | 15     | 7    | 4       | 1     | 8        | 3     | 34     | 6  |        | CVD-MT  |        |            |     |
|              | USA     | 16     | 6    | 7       | 6     |          | 0     | 2      | 1  |        | D       | ofert  | tune       |     |
|              | All     | 15     | 13   | 7       | 7     | 8        | 3     | 29     | 7  |        |         | 1.1    | type       |     |
|              |         | 1 1    |      |         |       |          |       | 1      |    |        | Workman | iship  | Functio    | nal |
|              |         |        |      |         |       | Co       | Intai | nment  | C  | ountry | Mean    | N      | Mean       | N   |
|              |         |        |      |         |       | M        | FG re | work   | U  | 5A     | 2       | 20     | 3          | 16  |
|              |         |        |      |         |       |          |       |        | T  | V      | 2       | 8      | 1          | 2   |
|              |         | • • •  |      | •       |       |          |       |        | A  | l .    | 2       | 28     | 3          | 18  |
|              |         |        |      |         |       |          |       | • • •  |    |        |         | •      |            |     |

#### Root Cause Analysis Summary

- Use different Graphical JMP Platforms in Engineering and Logical Sequence to conduct deeper Root Cause Analysis
  - 1<sup>st</sup> Layer Histogram: set Conditional Mosaic to investigate both SA and FA
  - 2<sup>nd</sup> Payer Box plot: know how to investigate the process special variations (skewness, outliers)
  - 3<sup>rd</sup> Layer Heatmap plot: narrow down the SA/FA root cause analysis scope to Defect Type X Country Square
  - 4<sup>th</sup> Layer Pareto Chart: conduct 2-dimensional Pareto Chart from previous Heatmap results
  - 5<sup>th</sup> Layer Tabulate: visualize the Pivot Table on integrating the previous layers of Root Cause Analysis
- Identify the Potential inputs (X<sub>s</sub>) to Predict the QN fix Cycle Time
  - 1<sup>st</sup> Layer Histogram: Defect type (X<sub>1</sub>)
  - 2<sup>nd</sup> Layer Box plot: Containment (X<sub>2</sub>), Country (X<sub>3</sub>)
  - **3<sup>rd</sup> Layer Heatmap**: Defect type (X<sub>1</sub>), Containment (X<sub>2</sub>), and Country (X<sub>3</sub>)
  - 4<sup>th</sup> Layer Pareto Chart: Defect type (X<sub>1</sub>), Containment (X<sub>2</sub>), and Country (X<sub>3</sub>), Workstation (X<sub>4</sub>)
  - 5<sup>th</sup> Layer Tabulate: Narrow Down to Damage (Defect type X<sub>1</sub>), Replacement (Containment X<sub>2</sub>), TW (Country, X<sub>3</sub>), CVD-SF (Workstation X<sub>3</sub>)
- Next Step: Build a model to predict the QN fix Cycle Time (Validation of Root Causes)

## Model Selection and Comparison

The fit model challenge:

- Skewed distribution: log transformation -> no help
- All input variables are categorical type (filter out 60% of workstation category, R–square increase by 6%)
- Dependency among categorical variables (low risk)





- Partition tree model:
  - » Distribution free model
  - » Split base on data available
  - » Little overfit concern
  - » Recursive split
  - » Random Forest Predictor Screening

| ⊿ 💌 Predictor Screening |              |               |  |        |  |  |  |  |
|-------------------------|--------------|---------------|--|--------|--|--|--|--|
|                         | in           | Copy Selected |  |        |  |  |  |  |
| Predictor               | Contribution | Portion       |  | Rank ^ |  |  |  |  |
| Defect type             | 1864.08      | 0.3384        |  | 1      |  |  |  |  |
| Work Station            | 1780.23      | 0.3232        |  | 2      |  |  |  |  |
| Country                 | 1038.42      | 0.1885        |  | 3      |  |  |  |  |
| Containment             | 702.34       | 0.1275        |  | 4      |  |  |  |  |
| fault by (ref)          | 123.17       | 0.0224        |  | 5      |  |  |  |  |

- Neural Network model:
  - » Strong transformation model
  - » Two steps (training & validation) model
  - » Significant overfit concern



| Y      | Log(immedicycle time 2) |
|--------|-------------------------|
|        | optional                |
| Weight | optional numeric        |
| Freq   | optional numeric        |
| By     | optional                |

Summary of Fit

Root Mean Square Error

Observations (or Sum Wats)

Mean of Response

0.303036 0.247055

0.933638

1.268714

270

RSquare

RSquare Adj

#### -Construct Model Effects

| Add      | Defect type    |
|----------|----------------|
| Cross    | Containment    |
| Nest     | Work Station   |
| Macros 🕶 | fault by (ref) |

#### Use **Log transformation** of the cycle time variable to transform the skewed cycle time distribution

| • | Remembered Settings |             |                 |         |             |                  |               |                     |                     |              |
|---|---------------------|-------------|-----------------|---------|-------------|------------------|---------------|---------------------|---------------------|--------------|
|   |                     |             |                 |         | Work        |                  | immediate fix | immediate fix cycle | immediate fix cycle |              |
|   | Setting             | Defect type | Containment     | Country | Station     | fault by (ref)   | cycle time 2  | time 2 Lower CI     | time 2 Upper Cl     | Desirability |
| ) | _Optimal_           | Wrong part  | Supplier rework | KR      | CCT-Staging | g Supplier fault | 0.5518602     | 0.2182356           | 1.3955084           | 0.895239     |
|   | Setting             | Defect type | Containment     | Country | Station     | fault by (ref)   | cycle time 2  | time 2 Lower Cl     | time 2 Upper Cl     | Desirability |
| ) | Optimal             | Dimension   | Replacement     | JP      | CVD-MT      | MFG fault        | 30.040394     | 9.7730486           | 92.338152           | 0.695992     |

#### (2) Partition Tree Model – Model Improvement & Comparison

#### Baseline Model

11

- Model is not adequate (R square 37.9%)
  - Originally 4 input factors

#### Model Augmentation

- Discuss with SME and select a new output variable (Y)
- Add 5<sup>th</sup> input variable (Workstation ,X)
- R square has been improved around 20%

#### Model Simplification

- Utilize Pareto principle and data filter to screen any minor data category
- Total sample size decrease to 270 from 426
- R square improve around 6%

| Select Columns | Cast Selected Columns into Roles | Action — |
|----------------|----------------------------------|----------|
| 28 Columns     | Y. Response A QN age (day)       | OK       |
| II. fault by   | optional                         | Cancel   |
| L Defect type  |                                  | Cancer   |
| QN age (day)   |                                  |          |
| L Country      | X Faster II Defect type          | Remove   |
| 🔥 UD code      | A, Tactor                        |          |
| 🔥 Work Center  |                                  | Recall   |
| IL WK          | ob code                          | Help     |
| IL ON type     | Country                          |          |
| 17.21902       | loptional                        |          |
|                |                                  |          |

|         |           |     | Number    |         |
|---------|-----------|-----|-----------|---------|
| RSquare | RASE      | N   | of Splits | AICc    |
| 0.379   | 27.269101 | 426 | 37        | 4111.52 |





|         |           |     | Number    |         |
|---------|-----------|-----|-----------|---------|
| RSquare | RASE      | N   | of Splits | AICc    |
| 0.623   | 4.5468444 | 270 | 35        | 1670.14 |

## Model Augmentation (R-square improved by 20%)

## • 0% R-square Improvement

**Column Contributions** 

Term

Country

UD code

Defect type

fault by (ref)

RSquare

0.368

Number

of Splits

12

| Column Contributions |                     |         |     |     |           | 🖌 QN age (day) |      |     |
|----------------------|---------------------|---------|-----|-----|-----------|----------------|------|-----|
| Term                 | Number<br>of Splits |         | ss  |     |           |                | Port | ion |
| Defect type          | 17                  | 114415. | 148 |     |           |                | 0.5  | 911 |
| Country              | 14                  | 59520.9 | 863 |     |           |                | 0.3  | 075 |
| UD code              | 5                   | 19591.3 | 368 |     |           |                | 0.1  | 012 |
| fault by (ref)       | 1                   | 50.4751 | 834 |     |           |                | 0.0  | 003 |
|                      | 1                   |         |     |     | Number    |                |      |     |
| RSquare              | e                   | RASE    |     | Ν   | of Splits | A              | ICc  |     |
| 0.37                 | 27.2                | 69101   | 4   | 426 | 37        | 411            | 1.52 |     |

SS

15 2430.52733

12 2407.45243

8 1829.65564

5 168.540489

RASE

5.248367

🚄 immediat... cycle time

Number

N of Splits

426

Portion

0.3555

0.3522

0.2676

0.0247

AICc

40 2714.91

- 16% R-square Improvement
- Add X factor: MFG Workstation (the NO.2 ranking, around 28%)
- UD code less critical after adding workstation

Y, Response a immediat... cycle time Column Contributions

17 4546.69243

15 2794.18279

14 1584.96213

8 791.891966

2 38.4684764

RASE

4.548719

SS

Number

of Splits

Term

Country

UD code

Defect type

Work Station

fault by (ref)

RSquare

0.525

| • | Another | <b>4%</b> | R-Sq | uare |
|---|---------|-----------|------|------|
|   | improve |           |      |      |

Change X factor: Containment from UD code

| Builds a decision tree to predict a response.                                           |                                                                                                         |
|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Select Columns                                                                          | Cast Selected Columns into Roles Action                                                                 |
| 36 Columns                                                                              | Y. Response 🖌 immediat cycle time 🛛 OK                                                                  |
| Enter column name P 🔻                                                                   | optional                                                                                                |
| fault by (ref) Defect type Containment Country immediate fix cycle time BU Work Station | X, Factor II, fault by (ref)<br>L Defect type<br>Containment<br>L Containment<br>Help<br>L Work Station |

#### **Column Contributions**

Portion

0.4660

0.2864

0.1625

0.0812

0.0039

AICc

56 2634.23

| Term           | Number<br>of Splits | SS         |        | Portion |
|----------------|---------------------|------------|--------|---------|
| Defect type    | 16                  | 4612.40123 |        | 0.4390  |
| Work Station   | 17                  | 4260.34495 |        | 0.4055  |
| Containment    | 6                   | 894.132282 |        | 0.0851  |
| Country        | 10                  | 603.876596 |        | 0.0575  |
| fault by (ref) | 3                   | 134.900637 |        | 0.0128  |
|                |                     |            | Number |         |

|         |           |     | Number    |         |
|---------|-----------|-----|-----------|---------|
| RSquare | RASE      | N   | of Splits | AICc    |
| 0.566   | 4.3510406 | 426 | 52        | 2585.74 |

Top two input (X) factors in rankings: Defect type & Country → Defect type & Workstation

426

Number

N of Splits

## Model Simplification (R-square improved by 6%)

0.4055

0.0851

0.0575

0.0128

⊿ 💌

- Previous model augment includes all categories & data
  - Plus: considering all scenarios

13

Work Station

Containment

Country fault by (ref)

Drawback: too many categories might dilute prediction power



17 4260.34495

6 894.132282

10 603.876596

3 134.900637

- Simplify dataset by filtering out minor categories with fewer counts to improve prediction power
  - **Remove 60% categories of Workstation**

|                           | 1              |              |                 |          |             |         |         |
|---------------------------|----------------|--------------|-----------------|----------|-------------|---------|---------|
| Data Filter               | Ide            |              |                 |          | Work        | immedia | ate fix |
| Clear Favorites 🕶         | fault by (ref) | Defect type  | Containment     | Country  | Station     | cycle t | ime     |
| Select of Show of Include | Supplier fault | Functional   | Replacement     | USA      | CVD-MT      |         | 47      |
| 270 matching rows         | AMAT fault     | Damage       | MFG rework      | TW       | CVD-SF      | [       |         |
|                           | MFG fault      | Workmanship  | Supplier rework | KR       | CVD-LID     |         |         |
| fault by (ref) (3)        |                | Dimension    |                 | DE       | CCT-Staging |         |         |
| AMAT fault 41             |                | Cosmetic     |                 | JP       | PVD-M       | h .     |         |
| MFG fault 11              |                | Labeling     |                 | <b>F</b> | CVD-PK      |         |         |
| Supplier fault 374        |                | Missing part |                 |          |             |         |         |
| Defect type (11) ×        |                | Wrong part   |                 |          |             |         | 0       |
| Damage 67                 |                |              | -               |          |             |         | -       |
| Dimension 63              |                |              |                 |          |             |         |         |
| Functional 60             |                |              | Numb            | er       |             |         |         |
| Cosmetic 54               | PCourse        | DACE         | M of Sol        | ite A    | IC c        |         |         |
| Workmanship 50            | nsquare        | INASE.       |                 |          | icc         |         |         |
| Missing part 40           | 0.623          | 4.5468444    | 270             | 35 1670  | .14         |         |         |
| Wrong part 36             |                |              |                 |          |             |         |         |
| Labeling 35               | Column Co      | ntribution   | s               |          |             |         |         |
| DOA 7 ~                   |                | Number       |                 |          |             |         |         |
| Containment (4)           | T              | Number       |                 |          |             | Denting |         |
| Poplacement 224           | Term           | or Splits    |                 |          |             | Portion |         |
| MEG rework 120            | Defect type    | 9 45         | 12.26539        |          |             | 0.4900  |         |
| Supplier rework 49        | Work Station   | 14 28        | 303.04562       |          |             | 0.3044  |         |
| use as is 14              | Containment    | 3 11         | 50.87421        |          |             | 0.1250  |         |
|                           | fault by (ref) | 3 38         | 34.822466       |          |             | 0.0418  |         |
|                           | Country        | 6 34         | 8.534565        |          |             | 0.0389  |         |
|                           | country        | 0 0.         |                 |          | 1           | 0.0000  |         |

Total amount (N) decreases to 270 from 426 (156

#### Partition Tree Model Optimization – Min & Max QN Cycle Time

- The major contributor are Defect type & Workstation ~ 80% (Pareto Concept)
- According to prediction profiler of the method,
  - The best scenario (min cycle time) :Labeling, PVD-M
  - The worst scenario (max cycle time) :Damage, CVD-MT

| Column Contributions |                     |            |  |         |  |  |  |  |  |  |
|----------------------|---------------------|------------|--|---------|--|--|--|--|--|--|
| Term                 | Number<br>of Splits | SS         |  | Portion |  |  |  |  |  |  |
| Defect type          | 9                   | 4512.26539 |  | 0.4900  |  |  |  |  |  |  |
| Work Station         | 14                  | 2803.04562 |  | 0.3044  |  |  |  |  |  |  |
| Containment          | 3                   | 1150.87421 |  | 0.1250  |  |  |  |  |  |  |
| fault by (ref)       | 3                   | 384.822466 |  | 0.0418  |  |  |  |  |  |  |
| Country              | 6                   | 358.534565 |  | 0.0389  |  |  |  |  |  |  |



Doesn't country impact QN fix cycle time? Is it right?

#### 15 Model Limitations: Recursive Partitions Column Contributions Number Recursive partitions (sequential dependency risk) of Splits SS Portion Term 9 4512.26539 0.4900 Defect type Factor "country" is split 6 times, and only 1 time 0.3044 Work Station 14 2803.04562 Containment 3 1150.8742 0.1250 happened in the higher cycle time cluster. fault by (ref) 3 384.822466 0.0418 6 358.534565 0.0389 Country All Rows Such recursive dependency limitation may impact 270 LogWorth Difference Count 5.37063 6.2888889 8.0095095 Mean the predictive model Defect type(Workmanship, Defect type(Dimension, Damage) Std Dev 7.4153129 Cosmetic, Functional, Wrong part, 88 LogWorth Difference Count Labeling, Missing part) 9.9090909 6.82274 Mean 2.171908 182 LogWorth Difference Count Std Dev 10.50958 Mean 4.5384615 4.1898365 5.13333 Work Station(CCT-Staging, CVD-Std Dev 4.3792774 LID, CVD-MT, CVD-SF, PVD-M) Defect type(Dimension) Count 170 LogWorth Difference Count 20 LogWorth Difference Mean 4.2 5.4641383 2.86316 Mean 12.8 1.0241808 5.36264 Containment(Supplier rework, Std Dev 6.8333547 Std Dev 4.1031089 MFG rework) 95 LogWorth Difference Count Containment(Replacement) 6 Mean 2.9368421 1.5480432 1.48192 Country(KR, JP, TW) Country(USA, DE) Count 75 LoaWorth Difference Count 13 LogWorth Difference Count Country(JP, TW) Std Dev 3.1515296 Mean 5.8 2.3076389 3 Mean 10.923077 1.011907 7.35 Mean 16.285714 33 LogWorth Difference Count Std Dev 4.6031716 Std Dev 7.7616744 Std Dev 2.3603874 Mean 1.969697 2.2843331 1.44615 Candidates Std Dev 1.5100672 Work Station(CCT-Staging, CVD-Work Station(PVD-M, CVD-MT) LID, CVD-SF) Count 45 LogWorth Difference 30 LogWorth Difference 7 2.2116705 5.41353 Mean 4 1.2289428 2.91667 Std Dev 4.9313469 Std Day 3 4038518 Country(DE, USA, KR) Defect type(Labeling, Functional, Defect type(Missing) Defect type(Workmanship, Missing Cosmetic, Wrong part) Workmanship) Count 62 LogWorth Difference 38 LogWorth Difference part, Cosmetic, Labeling) Count Mean 3.4516129 2.1365378 2.53066 24 LogWorth Difference Mean 6.1578947 1.3650477 3.96364 Mean 11.571429 Mean 4.5833333 1.3820103 2.92308 Std Dev 3.651532 Std Dev 4.1167182 Std Dev 6.7046537 Std Dev 3.549852 Candidates 3 Country(TW, USA) Country(KR. DE) Work Station(CVD-SF, CCT) Country(JP, TW, DE, KR) Country(USA) Count 33 LogWorth Difference Count Staging, CVD-LID, PVD-M) 11 LogWorth Difference Count 13 LogWorth Difference Mean 5.6363636 0.3384261 9.6 Mean Mean 5.9230769 1.1149059 Count 23 LogWorth Difference Mean 3 0.6346458 1.46667 Std Dev 3.7149881 Std Dev 5.4129474 Std Dev 1.9493589 Std Dev 4.0918932 Mean 5.0434783 1.1627271 3.2197 Candidates Std Dev 4.2584489 Work Station(CVD-MT) Work Station(PVD-M Work Station(CVD-SE\_CVD-LID) Work Station(CCT-Staging) Work Station(CCT-Staging) Work Station(CVD-SF, CVD-LID) 25 LogWorth Difference Count Count Count Count Count Mean 5.36 0.1461622 0.62281 Mean 6.5 Country(DE, KR) Country(USA) Mean 3.6666667 Mean 3.4 7.5 Std Dev 3.5223098 Std Dev 4.4077853 dean. Std Dev 1.0954451 Std Dev 2.3380904 Std Dev 3.3615473 Std Dev 3.8544964 Count 11 LogWorth Difference Count 12 LoaWorth 5 Candidates Mean 3.3636364 1.1063871 4.46667 Mean 6.5833333 1.271219 Candidates Candidates Candidates Candidates Country(USA) Country(TW) Std Dev 4.2254639 Std Dev 3.8247598 Count 19 Count Mean 5.2105263 Mean 5.8333333 Std Dev 3 4893321 Std Dev 3.920034 Candidates Candidates

## Neural Network (Artificial Intelligence)

- Observe severe overfit concern between training and validation R square
  - Overfit: > 20% R-Sq between Training Set (building model), and Validation Set (fitting model)
  - Too aggressive Black-Box transformation to build a model with training set (too good to be true)
- The major contributor : Workstation

| Training       |                | ⊿ Validation   |                |  |  |  |  |  |  |
|----------------|----------------|----------------|----------------|--|--|--|--|--|--|
| immediate f    | fix cycle time | ⊿ immediate f  | fix cycle time |  |  |  |  |  |  |
| Measures       | Value          | Measures       | Value          |  |  |  |  |  |  |
| RSquare        | 0.659755       | RSquare        | 0.4449701      |  |  |  |  |  |  |
| RASE           | 4.5389141      | RASE           | 4.7913103      |  |  |  |  |  |  |
| Mean Abs Dev   | 3.0979374      | Mean Abs Dev   | 3.5440675      |  |  |  |  |  |  |
| -LogLikelihood | 527.69274      | -LogLikelihood | 268.71682      |  |  |  |  |  |  |
| SSE            | 3708.3134      | SSE            | 2066.0989      |  |  |  |  |  |  |
| Sum Freq       | 180            | Sum Freq       | 90             |  |  |  |  |  |  |

#### Variable Importance: Independent Uniform Inputs

| Summary Report |             |              |    |    |    |    |  |  |  |  |  |  |
|----------------|-------------|--------------|----|----|----|----|--|--|--|--|--|--|
| Column         | Main Effect | Total Effect | .2 | .4 | .6 | .8 |  |  |  |  |  |  |
| Work Station   | 0.081       | 0.566        |    |    |    |    |  |  |  |  |  |  |
| fault by (ref) | 0.05        | 0.544        |    |    |    |    |  |  |  |  |  |  |
| Country        | 0.043       | 0.352        |    |    |    |    |  |  |  |  |  |  |
| Defect type    | 0.108       | 0.336        |    |    |    |    |  |  |  |  |  |  |
| Containment    | 0.104       | 0.289        |    |    |    |    |  |  |  |  |  |  |



#### Model Comparisons and Selection



- Root Cause Analysis: Damage issue (defect type), Replacement (containment), TW (country), CVD-SF (workstation) is the worst scenario with longer QN fix cycle time
  - Neural Model has the identical scenario as the graphical root cause analysis
  - Only concern on the Overfit risk
- The 3 models have very close prediction on the worst cycle time within 1.2 Days

|           |             | Summary of Fit             |                           |              |            |                        | Remembered Settings |                      |                           |                            |                       |                                |                                         |                                            |                                           |                                                                   |                          |
|-----------|-------------|----------------------------|---------------------------|--------------|------------|------------------------|---------------------|----------------------|---------------------------|----------------------------|-----------------------|--------------------------------|-----------------------------------------|--------------------------------------------|-------------------------------------------|-------------------------------------------------------------------|--------------------------|
| Fit Mode  |             | RSquare<br>RSquare Adj     | Guara Error               | 0.30303      | 6<br>5     |                        | 0                   | Setting<br>_Optimal_ | Defect type<br>Wrong part | Containmer<br>Supplier rew | nt Country            | Work<br>Station<br>CCT-Staging | <b>fault by (ref)</b><br>Supplier fault | immediate fix<br>cycle time 2<br>0.5518602 | immediate fix cy<br>time 2 Lowe<br>0.2182 | r Cl immediate fix cycle<br>r Cl time 2 Upper Cl<br>356 1.3955084 | Desirability<br>0.895239 |
|           |             | Mean of Res<br>Observation | sponse<br>s (or Sum Wgts) | 1.26871      | 4<br>10    |                        | 0                   | Setting<br>Optimal   | Defect type<br>Dimension  | Containm<br>Replaceme      | ent Country<br>ent JP | Station<br>CVD-MT              | <b>fault by (ref)</b><br>MFG fault      | <b>cycle time 2</b><br>30.040394           | time 2 Lower<br>9.77304                   | CI time 2 Upper CI<br>86 92.338152                                | Desirability<br>0.695992 |
|           |             |                            |                           |              |            |                        |                     | Setting              | Defect type               | Work<br>Station            | Containment           | Country                        | fault by (ref)                          | mmediate fix                               | Desirability                              |                                                                   |                          |
| Partition |             | RSquare                    | RASE                      | N            | of Spli    | er<br>ts AICo          | •                   | _Optimal_            | Labeling                  | PVD-M                      | MFG rework            | JP                             | Supplier fault                          | 0.8                                        | 0.857144                                  |                                                                   |                          |
|           |             | 0.623                      | 4.5468444                 | 270          | 3          | 35 1670.14             | <u>+</u>            | Setting              | Defect type               | Station                    | Containment           | Country                        | fault by (ref)                          | cycle time                                 | Desirability                              |                                                                   |                          |
|           | Train       | ing                        |                           | ⊿ Valida     | ation      |                        |                     | Rememb               | pered Settin              | as                         | Replacement           | KI                             | WI C IBUIL                              | 20.0                                       | 0.201314                                  |                                                                   |                          |
|           | ⊿imr        | <mark>nediate f</mark> iz  | x cycle time              | ⊿ imn        | nediate f  | ix cycle tim           | e                   |                      |                           |                            |                       | Work                           |                                         | immediate fix                              |                                           |                                                                   |                          |
|           | Mea         | isures                     | Value                     | Meas         | ures       | Value                  |                     | Setting              | Defect type               | Containme                  | ent Country           | Station                        | fault by (ref)                          | cycle time                                 | Desirability                              |                                                                   |                          |
| Neural    | RASI        | Lare<br>E 4                | 4.5389141                 | RASE         | are        | 4.7913103              |                     | _opumai_             | workmanship               | Supplier rev               | WORK KR               | Work                           | g supplier lault                        | immediate fix                              | 0.999797                                  |                                                                   |                          |
|           | Mea         | n Abs Dev                  | 3.0979374                 | Mean         | Abs Dev    | 3.5440675              |                     | Setting              | Defect type               | Containm                   | nent Country          | / Station                      | fault by (ref)                          | cycle time                                 | Desirability                              |                                                                   |                          |
|           | -Log<br>SSE | Likelihood                 | 527.69274<br>3708.3134    | -Logi<br>SSE | .ikelihood | 268.71682<br>2066.0989 | 0                   | _Optimal_            | Damage                    | Replacem                   | ient TW               | CVD-SF                         | Supplier fault                          | 29.019381                                  | 0.666909                                  |                                                                   |                          |
|           | Sum         | Freq                       | 180                       | Sum I        | Freq       | 90                     |                     |                      |                           | • • •                      |                       |                                |                                         |                                            | •                                         |                                                                   |                          |

## Text Mining and Data Mining Hybrid

- Search keywords from QN Database (Categorical and Text Variables)
- Convert the Keywords information to Binary Indicators
- Conduct the further Data Mining- Root Cause Analysis On F10246 Case

| Text Explorer for ON long text                                                                                                                                                                                                                                                                                                                                                           |                  | Sum(replac· Ind                                                                            | icator) & Sum(rework· I                                                                           | Indicator) vs. dimens· Indicator                                                                                           |                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                          |                  | 0                                                                                          | <mark>F10246 i</mark>                                                                             | indicator 1                                                                                                                | immediate fix cycle time                                     |
| Number<br>of Terms<br>of CasesNumber<br>Tokens<br>Tokens<br>per CaseNumber of Non-<br>Empty CasesPortion of Non-<br>Empty Cases737108488045.18521081.0000CeplacsupplierSupplierissureworklabelmfgprovidpart                                                                                                                                                                              | replac-Indicator | dimens- Indicator: 0<br>Mean(immediate fix cycle time): 4.33<br>Sum(replac- Indicator): 43 | dimens- Indicator: 1<br>Mean(immediate fix<br>cycle time): 11.39<br>Sum(replac-<br>Indicator): 13 | dimens- Indicator: 0<br>Mean(immediate fix cycle<br>time): 22.22<br>Sum(replac- Indicator): 8<br>Gum(replac- Indicator): 8 | 225<br>- 18.1<br>13.8 immediate fix cycle time<br>9 9<br>5.0 |
| damag cabl festo screw sf hole inform qti mic-<br>miss tc wrong materi hc plan qn susceptor 11 attach-<br>incorrect instal power function one open box pcs refer scratch<br>4 ac check draw help make pin workmanship actual correct lid m16<br>process receiv recoveri y 0246 2 amat locat posit see side spare surfac version<br>0191 3 23 connect find heater result swap termin turn | k- Indicator     | dimens- Indicator: 0<br>Mean(immediate fix cycle time): 4.33<br>Sum(rework- Indicator): 22 | dimens<br>Indicator: 1<br>Mean(imm<br>fix cycle<br>time): 11.39<br>Sum(rework<br>Indicator): 4    | dimens- Indicator: 0<br>Mean(immediate fix cycle time): 22.22<br>Sum(rework- Indicator): 10                                |                                                              |
| Over 5 days fix cycle time have strong<br>relationship with "Replace, rework, dimension,<br>F10246"                                                                                                                                                                                                                                                                                      | rewor            |                                                                                            |                                                                                                   |                                                                                                                            |                                                              |

## Take Away Learnings

- JMP Graphical Platforms are powerful to conduct deeper root cause analysis through Engineering, Logical, Data-Driven process
- Compare and Select more appropriate JMP Model from Classical Fit Model to modern Partitions and Neural Network by knowing the model limitations and risks connecting to previous Graphical Root Cause Analysis
- Conduct the Hybrid Text Mining and Data Mining Root Cause Analysis on the Complicated QN Database

• THANK GCI MBB Charles Chen as my Project Mentor

# Thank You