DESIGN OF EXPERIMENT'S CRUCIAL STEP 0: CHOOSING THE RIGHT DOE OPTION

JMP Discovery Summit Americas 2023 Christine M. Anderson-Cook candcook@gmail.com

JMP	File	Edit	Tables	DOE	Analyze	Graph	Ea	rly Adopter	Tools	View	Window	Help
		-	>	Custor Augme Easy D	n Design ent Design OE		_	?				
	Ś			Definit Classic Desigr Consu Specia Sampl Reliabi	ive Screen cal Diagnostio mer Studie I Purpose e Size Explo lity Design	ing 2 cs 2 s 2 orers 2 s 2		?	د.			

CHOICES, CHOICES, CHOICES

b		
DOE	Analyze	Graph
Custon	n Design	
Augme	nt Design	
Easy D	OE	
Definit	ive Screeni	ng >
Classic	al	1,
Design	Diagnosti	cs >
Consu	mer Studie	s 🔉
Specia	l Purpose	\rightarrow
Sample	e Size Expl	orers >
Reliabi	lity Design	s 💙

D	efinitive Screening			
С	lassical >	Т	wo Level Screening >	
D	esign Diagnostics >	R	esponse Surface Design	
С	onsumer Studies >	F	ull Factorial Design	
S	pecial Purpose >	N	1ixture Design	\sim
S	ample Size Explorers >	Т	aguchi Arrays	ct
R	eliability Designs >			51
	Definitive Screening	>		
	Classical	>		
	Design Diagnostics	>		
	Consumer Studies	>		
	Special Purpose	>	Covering Array	
	Sample Size Explorers	>	Space Filling Design	
	Reliability Designs	>	Accelerated Life Test Design	
			Nonlinear Design	
			Balanced Incomplete Block D	esign
			MSA Design	
			Group Orthogonal Supersatu	rated

'hen you are an expert \ldots

2

Vhen you are getting tarted

>

OUTLINE

- What are we trying to accomplish with our experiment? Understanding what the goal is of the experiment will help to match possible choices to our experiment NEEDS SUBJECT MATTER EXPERTISE!
- 2. What are the common DOE choices in JMP? Quick walk through of some of JMP's most popular design of experiment choices
- 3. Key Questions to consider before generating a design What do we already know about the factors, responses and their relationship? What are the constraints under which we need to operate?

NEEDS SUBJECT MATTER EXPERTISE!

WHAT ARE WE TRYING TO DO? (EXPERIMENTAL OBJECTIVES)

1. Pilot Study – make sure that data quality and input space of interest is suitable

- 2. Exploration / Screening identify important factors (eliminate those not important), see basic relationships
- 3. Modeling capture relationship between inputs and response(s) in functional form
- 4. Model Refinement make sure model has sufficient precision for what is needed
- 5. Optimize use model to solve problem, optimize system performance
- 6. Confirm verify results are robust in environment that they will be used

OUTLINE

- What are we trying to accomplish with our experiment? Understanding what the goal is of the experiment will help to match possible choices to our experiment
- 2. What are the common DOE choices in JMP? Quick walk through of some of JMP's most popular design of experiment choices
- 3. Key Questions to consider before generating a design What do we already know about the factors, responses and their relationship? What are the constraints under which we need to operate?

CHOICES

CLASSICAL DESIGNS – PART 1

- Key characteristics:
 - Designed for standard situations with pre-specified regions and # of runs
 - Good overall performance
- Purpose:
 - Screening & Modeling

CLASSICAL DESIGNS – PART 2

• Key characteristics:

• Special situations:

- Mix = when proportions of ingredients matters
- Tag = making process robust to things we can't control in production

Purpose:

- Mix = Screening & Modeling
- Tag = Optimizing robustness

DEFINITIVE SCREENING DESIGN

- Key characteristics:
 - Allows screening for important factors, but also exploration for curvature
 - Specialized analysis
- Purpose:
 - Screening & Modeling

- 1. Pilot Study
- 2. Exploration / Screening
- 3. Modeling
- 4. Model Refinement
- 5. Optimize
- 6. Confirm

•					
💌 Σ	F	X1	X2	X3	
•	1	0	1	1	
•	2	0	-1	-1	
•	3	1	0	1	
•	4	-1	0	-1	
•	5	1	-1	0	
•	6	-1	1	0	
•	7	1	-1	-1	
•	8	-1	1	1	
•	9	1	1	-1	
•	10	-1	-1	1	
•	11	1	-1	1	
•	12	-1	1	-1	
•	13	1	1	-1	
•	14	-1	-1	1	
•	15	1	1	1	
•	16	-1	-1	-1	
•	17	0	0	0	

• Key characteristics:

- Want to test if combinations of factors cause problems
- Ideal for testing of software across very large number of combinations
- Purpose:
 - Exploration

SPECIAL PURPOSE – COVERING ARRAY

7 8 9 10 2 3 5 6 Runs 0 0 0 0 0 0 0 0 0 0 12 0 0 0 13 0

- Factors

Example: All combinations of levels for any 3 factors appear at least once

- 1. Pilot Study
- 2. Exploration / Screening
- 3. Modeling
- 4. Model Refinement
- 5. Optimize
- 6. Confirm

DOE	Analyze	Graph	E	arly Adopter	Tools	View	Windo	w	Help
Custor	m Design								
Augme	ent Design								
Easy L	DOF								
Definit	tive Screen	ing 💙	•						
Classi	cal	>	•						
Desigr	n Diagnosti	cs 💙	•						
Consu	mer Studie	s 💙	•						
Specia	al Purpose	>		Covering Arr	ay				
Sampl	e Size Expl	orers >		Space Filling	Design				
Reliab	ility Design	s 🔉		Accelerated	Life Test	Design			
				Nonlinear De	esign				
				Balanced Inc	omplete	Block De	esign		
				MSA Design					
				Group Ortho	gonal Su	persatur	ated	>	

SPECIAL PURPOSE – SPACE FILLING

• Key characteristics:

- Good option if little is known about underlying relationship
- Common in computer experiments

• Purpose:

• Exploration & Modeling

- 1. Pilot Study
- 2. Exploration / Screening

- 3. Modeling
- 4. Model Refinement
- 5. Optimize
- 6. Confirm

DOE	Analyze	Graph	E	arly Adopter	Tools	View	Windov	v He	lp
Custom Augmen Easy DC	Design It Design DE								
Definitiv Classica Design I Consum	ve Screeni al Diagnostio per Studie	ng) cs) s)							
Special Sample Reliabilit	Purpose Size Expl ty Design	orers >		Covering Arr Space Filling Accelerated	ay Design Life Test	Design			
				Nonlinear De Balanced Inc MSA Design Group Ortho	esign complete gonal Su	Block De	esign ated	>	

• Key characteristics:

- Design to characterize sources of variability
- Assess precision of measurement system
- Purpose:
 - Pilot study data adequacy

SPECIAL PURPOSE – MSA DESIGN (MEASUREMENT SYSTEM ANALYSIS)

▼	Factors				
	Add Factor Ad	d N Factors 1	Remove		
	Show Levels				
	Name	MSA Role	# of Levels	Randomize	
	<mark>_</mark> _X1	Operator	3	Yes	
	X 2	Part	4	Yes	
	X 3	No Operato Part	or	Yes	
Nur	nber of Replicates 2	Repl Gauge None Batch Re Fast Rep	Randomized epeat beat		
		1. Pilot 2. Explo	Study pration / Scree	ening	

- 3. Modeling
- 4. Model Refinement
- 5. Optimize
- 6. Confirm

DOE A	nalyze	Graph	E	arly Adopter	Tools	View	Winc	wol	Help
Custom D Augment Easy DOE	Design Design								
Definitive Classical Design Di	Screeni	ng cs	> > >						
Special P	er Studies urpose	5	> >	Covering Arr	ау				
Sample S Reliability	ize Explo v Designs	orers S	> >	Space Filling Accelerated	Design Life Test	Design			
				Nonlinear De Balanced Inc MSA Design	esign complete	Block De	esign		
				Group Ortho	gonal Su	persatur	ated	>	

• Key characteristics:

- When # factors > # runs
- Complementary analysis to identify important factors
- Important to not have too many active factors
- Purpose:
 - Exploration / Screening

SPECIAL PURPOSE – GROUP ORTHOGONAL SUPERSATURATED

Group Orthogonal Supersaturated Design Number of Runs Must be a multiple of 2 (or preferably 4) Number of Factors Add 1 for the Intercept. Structure Factors Number of Role Number Lower Upper of Groups Group Size Parameters Continuous **v** Intercept -1 X1 Continuous The second seco Note: Select an option above. -1 X2 Continuous Visite Continuous -1 X3 Continuous The second seco -1 X4 Continuous Visite Continuous -1 X5 Continuous Visite Continuous -1 X6 Continuous The second seco X7 -1 Continuous Visit A Continuous **Group Structure** Group 1 Swap X1 X2 X3 1. Pilot Study Group 2 X4 2. Exploration / Screening X5 X6 3. Modeling X7 4. Model Refinement Optimize 13 Confirm

CHOICES

CUSTOM DESIGN TO THE RESCUE!! of

•					DOE - Custor	m Design			
	Custom Design								
▼	Responses								
	Add Response 🔻	Remove	Number o	f Responses					
	Response Name		Goal	Lower Limit	Upper Limit	Importance	Lower Detection Limit	Upper Detection Limit	Units
	Y		Maximize						
•	Factors Add Factor T	move	Add N Factors	1					
	Continuous	le	Changes	Values		Ur	nits		
	Discrete Numeric	>							
	Categorical	>							
	Blocking	>							
	Covariate								
	Mixture	late	Runs						
	Constant		Load a set of ca	andidate runs for	covariates from the	e current			
	Uncontrolled	ors	data table.						
S	pecify Factors								
	Add a factor by clicking	the Add F	actor button. Do	ouble click					
	on a factor name or leve	l to edit it							
	Continue								

THINK SEQUENTIALLY - AUGMENT!

Adds runs to an existing design in	Augment Design such a way that the resulting design is opti	mal.
Select Columns	Cast Selected Columns into Roles	Action
 4 Columns X1 X2 X3 	Y, Response <i>Y</i> optional numeric	OK Cancel
	X, Factor X1 X2 X3	Remove Recall Help

Factors					
Name	Role	Changes	Values		Units
X1	Continuous	Easy	-1	1	
X2	Continuous	Easy	-1	1	
X3	Continuous	Easy	-1	1	
Group new runs Define Fact ugmentation Choid	into separate block or Constraints ces				
Replicate	Add Centerpoints	Fold C	Over Add Axial	Space Filling Aug	gment

WHAT ARE WE TRYING TO DO? (EXPERIMENTAL OBJECTIVES)

1. Pilot Study – make sure that data quality and input space of interest is suitable

- 2. Exploration / Screening identify important factors (eliminate those not important), see basic relationships
- 3. Modeling capture relationship between inputs and response(s) in functional form
- 4. Model Refinement make sure model has sufficient precision for what is needed
- 5. Optimize use model to solve problem, optimize system performance
- 6. Confirm verify results are robust in environment that they will be used

EASY DOE – HELP WITH DESIGN AND ANALYSIS

Guided Mode Flexible Mode Define Model Design Data Entry Analyze Predict Report

• Key characteristics:

- Assumes you want to do screening or modeling
- Will guide you through all steps of building, running and analyzing the experiment
- Purpose:
 - Exploration & Modeling

	►F	Response	s							
	F	actors								
			_		~					
		Role		O Guide	d Mode 🔵 Flexil	ole Mode				
		The feete		Define M	Model Design [Data Entr	Analy	ze Predic	t Beport	
		The lacto	r or Can ► Si				, ,			
			How	Mor						Number of
			► S	INIOC						Runs
lided	Mod	e 🔵 Flex	ible Mode							
e M	odel	Design	Data Entry	Analyze	Predict Report					
		Respons	se(s)						Design	
		neopene	,0(0)						Doolgii	
1/0 Co	ols ⊫				3/0 Cols 💌					
0 Row	S	Y			T2/0 Rows	X1	X2	X3		
	1		•		1	-1	1	1		12
	2		•		2	-1	-1	-1		
	4		•		4	-1	-1	-1		
	5		•		5	-1	1	-1		
	6		•		6	-1	1	1		
	7		•		7	1	1	1		12
	8		•		8	1	-1	1		
	9		•		9	1	1	-1		
	10		•		10	1	-1	-1		
	11		•		11	1	-1	-1		

OUTLINE

- What are we trying to accomplish with our experiment? Understanding what the goal is of the experiment will help to match possible choices to our experiment
- 2. What are the common DOE choices in JMP? Quick walk through of some of JMP's most popular design of experiment choices
- 3. Key Questions to consider before generating a design What do we already know about the factors, responses and their relationship? What are the constraints under which we need to operate?

Factors:

- Which ones?
 - Too many → experiment will need to be large to understand them all
 - Too few \rightarrow possibility of missing something important
- What type are they?

Continuous Discrete Numeric Categorical Blocking Covariate Mixture Constant Uncontrolled

What ranges / values for each?

- Too big → difficult to understand what is happening,
 miss a subtle feature
- Too small \rightarrow miss target location, effect of factors look
- very small
- Wrong location \rightarrow miss target location

Factors:

- Which ones?
 - Too many → experiment will need to be large to understand them all
 - Too few \rightarrow possibility of missing something important

Continuous

Categorical

Blocking

Covariate

Constant

Uncontrolled

Mixture

Discrete Numeric

• What type are they?

- Too big → difficult to understand what is happening,
 miss a subtle feature
- Too small \rightarrow miss target location, effect of factors look
- very small
- Wrong location \rightarrow miss target location

Factors:

- Which ones?
 - Too many → experiment will need to be large to understand them all
 - Too few \rightarrow possibility of missing something important

Continuous

• What type are they?

- What ranges / values for each?
 Too big -> difficult to understand what is happening, miss a subtle feature
 - Too small \rightarrow miss target location, effect of factors look
- very small
- Wrong location \rightarrow miss target location

Factors:

- Which ones?
 - Too many → experiment will need to be large to understand them all
 - Too few \rightarrow possibility of missing something important

Continuous

Categorical

Blocking

Covariate

Discrete Numeric

• What type are they?

- Too big → difficult to understand what is happening,
 miss a subtle feature
- Too small \rightarrow miss target location, effect of factors look
- very small
- Wrong location \rightarrow miss target location

Relationship between inputs and responses:

- Which responses are we interested in? [COMMON MISTAKE: forgetting an important response]
- What do we know about the relationships?
 - Continuous
 - Smooth
 - Complexity
 - First-order (main effects) common for screening
 - Interactions
 - Curvature

[COMMON MISTAKES: - assuming you know too much

- not designing for most complicated relationship]

First key decision: model-based (confident in smooth continuous, not too big a region)

or space-filling (not sure what to expect, large region, protects against surprises)

Anderson-Cook and Lu, 2021

CONSTRAINTS?

 Input regions / combinations where responses not possible? not of interest?

Define Factor Constraints

None

Specify Linear Constraints

- Use Disallowed Combinations Filter
- Use Disallowed Combinations Script

- Budget?

- Better to think in terms of ranges for # of runs, and then compare several designs

Design Explore	er				
Factors]
Name	Role	Values		Units]
X1	Continuous	-1	1		
X 2	Continuous	-1	1		
X 3	Continuous	-1	1		
Model					
Name		Estimability			
Intercept		Necessary			
X1		Necessary			
X2		Necessary			
X3		Necessary			
X1*X1		Necessary			
X1*X2		Necessary			
X2*X2		Necessary			
X1*X3		Necessary			
Alias Terms					
Design Explore	er Options				
Select options for a si specified options. Single Design	ngle design, or all com	binations of	All Combinations		
Criterion	D-Optimality	\bigcirc	Criterion	🗹 D-Optimality 📃 A-0	Optimality 📃 I-Optimality 📃 Alias Optimality
Buns		16	Runs	🗸 Locked 16	
Center Points		0	Center Points	✓ Locked 0	
Benlicates		0	Replicates		
Bandom Starts		5	Bandom Starts	5	
nanuom starts		5		V	
Make Design			Generate All Designs		

JMP White Paper: Benefits of considering several different design sizes Anderson-Cook, 2022

[•] HELPFUL RESOURCES

Types of Designed Experiments:

https://www.jmp.com/en_in/statistics-knowledge-portal/what-is-design-of experiments/types-of-design-of-experiments.html

Model-Based versus Space-Filling: Anderson-Cook, C.M. Lu, L. (2021) "The First Fork in the Road" Quality Progress 54(11) 48-51.

<u>Considering and comparing several design sizes and types</u>: JMP White Paper: Anderson-Cook, 2022 <u>https://www.jmp.com/en_us/whitepapers/jmp/choosing-the-right-design.html</u>

<u>The Why and How of Asking Good Questions</u>: JMP White Paper: Anderson-Cook, 2023 <u>www.jmp.com/asking-good-questions</u>