

김광희, 옥창수, 정순우 (삼성전기)

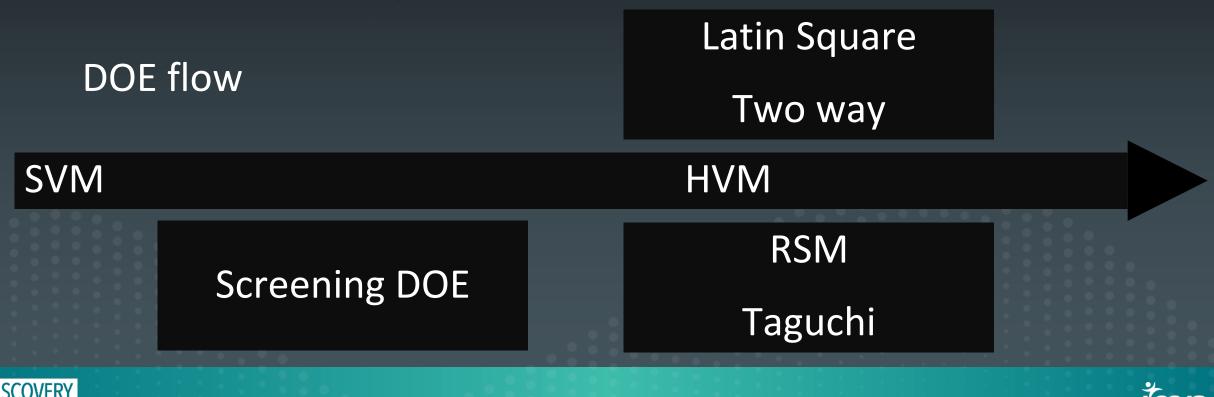
DOE(Taguchi vs RSM)

Optimization Experimental Design

김광희 (Big Data 분석 전문가) 옥창수 (품질 관리 기술사) 정순우 (품질 관리 기술사)

Content

- 1. What is DOE
- 2. DOE simulation
 - Taguchi
 - RSM
- 3. Result



Background

Why Taguchi vs RSM ?

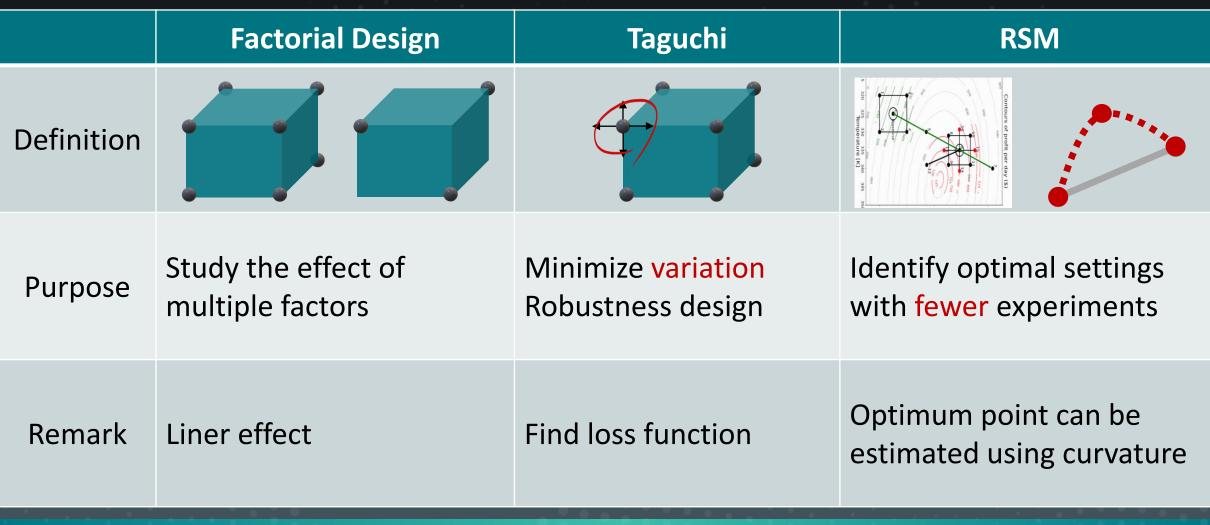
DOE 5 principals

Randomization : Random assignment -> Minimize bias

Replication : Repeat \rightarrow Reliability \triangle (Degrees of freedom for the error term increase.)

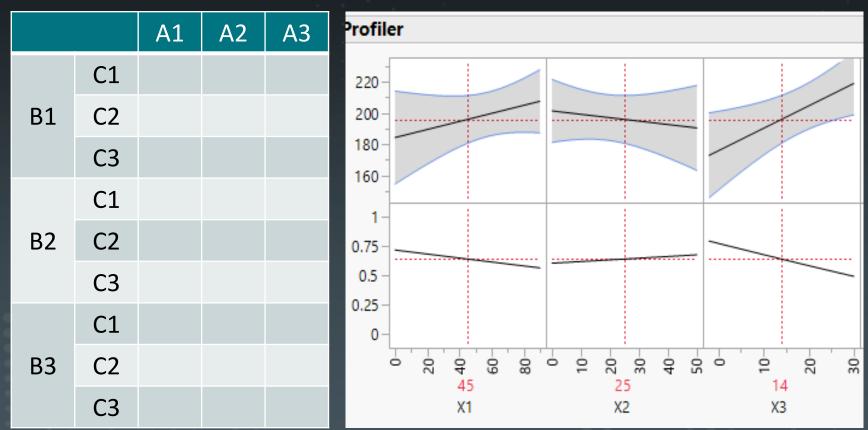
Blocking : Grouping similar units \rightarrow Controls for variables

Orthogonality : Independent factor combinations -> Reduce confounding



Confounding : Overlap of factor effects -> Affects clarity

Types of DOE designs



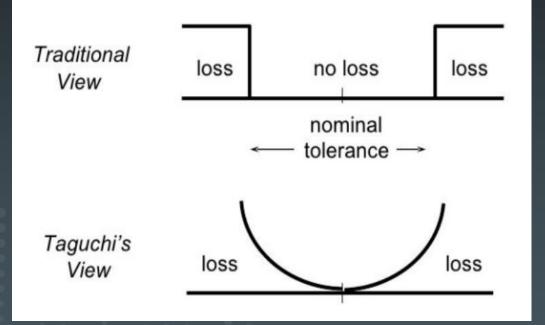
Factorial design

Input & Out put

• Cost and Time

• Sensitivity to Noise

• Limited Optimization and Surface Analysis


[≫] 3³ : 3-factor, 3-level design

Taguchi design

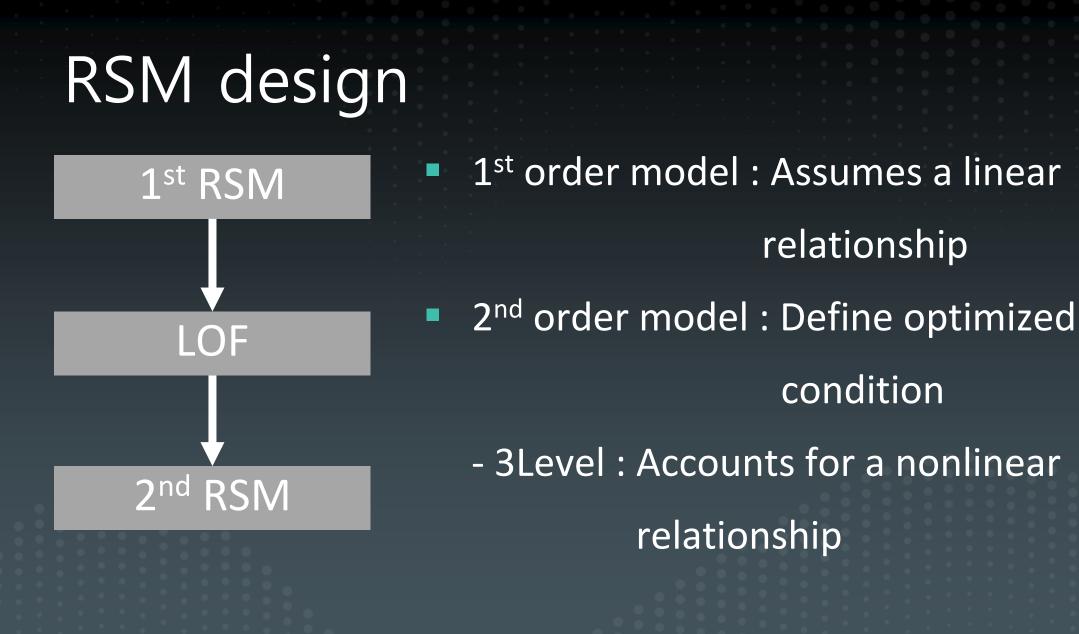
Shift → Loss → On target

Robust design against to noise
 Preferred higher SNB

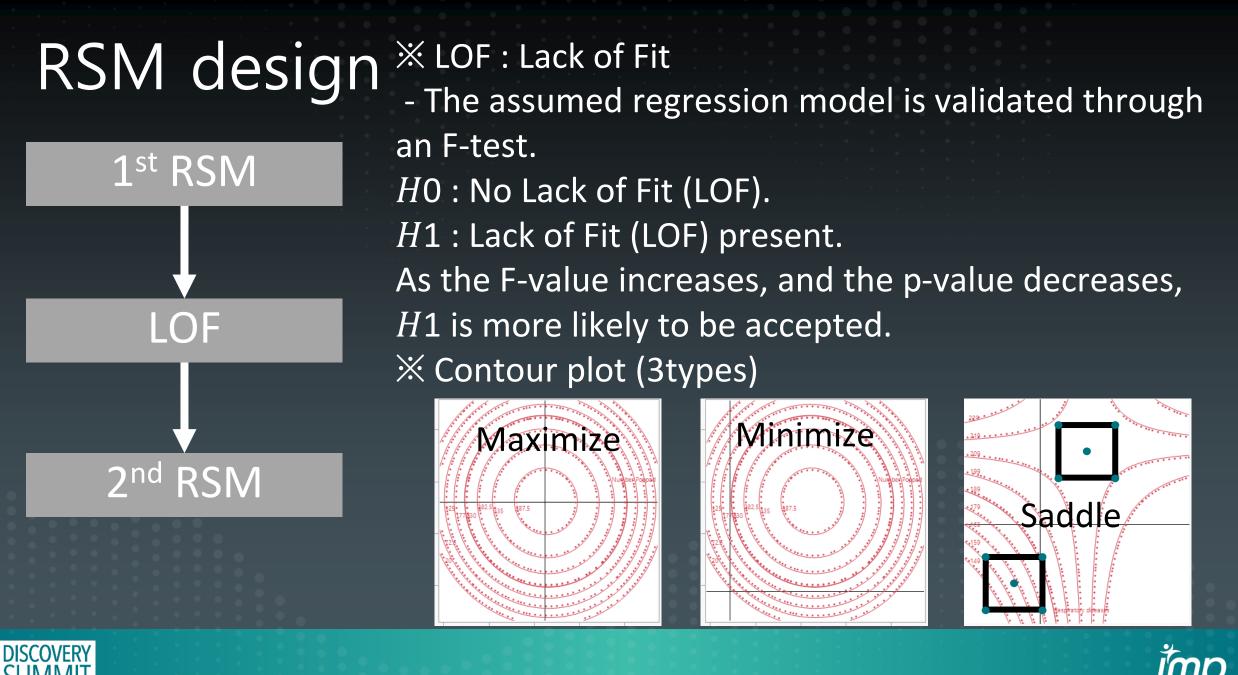
 Noise : Uncontrollable factors that affect the experiment
 (Ex : Environment condition, User variability and etc.)

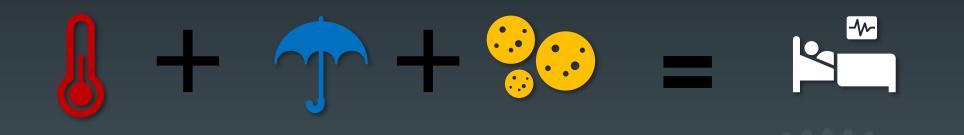
Taguchi design

- SNB : Signal to Noise ratio Preferred higher SNB
- Nominal is Best = $10\log\left(\frac{\bar{y}^2}{s^2}\right)$


- Larger is Better = $-10log\left(\frac{\sum_{i=1}^{n}\frac{1}{y^{2}}}{n}\right)$

- Smaller is Better = $-10log\left(\frac{\sum_{i=1}^{n} y^{2}}{n}\right)$


Signal


CCD : Central composite Design
 Rotatability : Equal variance
 Corner : Extreme value
 Box benken

→ Edge : Realistic value

Condition

Under what conditions of temperature, precipitation, and fine dust levels does the rate of respiratory diseases increase?

Data reference

<u>- https://www.weather.go.kr</u> (기상청) <u>- https://ncv.kdca.go.kr</u>(감염병포털)

🖉 DOE - Taguchi Arrays - JMP

File Edit Tables Rows Cols DOE Analyze Graph Tools View Window Help

🛛 💌 Taguchi Design

Response Response Name Lower Limit Upper Limit Goal Importance Respiratory diseases Smaller is Better 290 145 ⊿ Factors Signal 💌 Noise Remove Role Values Units 2 Level Signal 2 3 3 Level 2 Signal 3 **X**3 2 3 Signal **X**4 L2 Noise L1

Select Level

Noise

 \times

—

💋 DOE - Taguchi Arrays - JMP \times File Edit Tables Rows Cols DOE Analyze Graph Tools View Window Help Taguchi Design Response Response Name Goal Lower Limit Upper Limit Importance Smaller is Better 145 290 Respiratory diseases ⊿ Factors Name Role Values Units 8.5 150 Precipitation Signal 0 20 63 Fine dust Signal 0 I Temperature Signal -2 16 30 🔥 Sex Male Female Noise

Add Noise

L9 : L9(3⁴) Frequent orthogonal table in 3level, 4factors

4 Factors

- Choose Inner and Outer Array Designs –

Inner Array

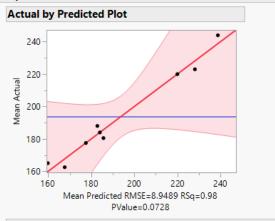
Number

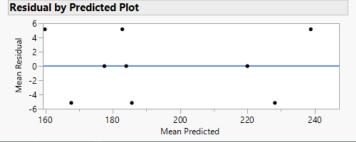
9	L9 - Taguchi
0.7	E de Estado de la companya de

27 Full Factorial

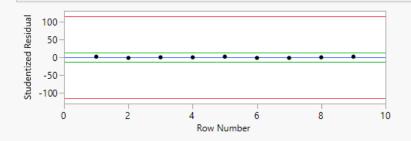
Continue

Back





Taguchi Mean, SNB (Smaller is Better = $-10log\left(\frac{\sum_{i=1}^{n} y^{2}}{n}\right)$)

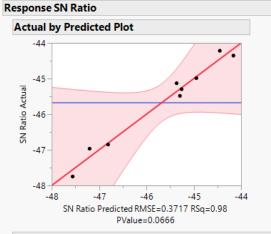

►L9	٩ 🗸 📮									
Design L9		Precipitation	Fine dust	Temperature	Pattern	-	+	Mean	SN Ratio	
Model	1	0	0	-2		160	170	165	-44.35366507	
	2	0	20	16	-00	181	180	180.5	-45.12957745	
	3	0	63	30	-++	218	222	220	-46.84881252	
Columns (8/0)	4	8.5	0	16	0-0	183	185	184	-45.29648474	
Q,		8.5	20	30	00+	246	242	244	-47.7480883	
🖺 Precipitation 🛠	6	8.5	63	-2	0+-	165	160	162.5	-44.2180951	ARC
📕 Fine dust 🛠	4	150	0	30	+-+	226	220	223	-46.96688318	$-A_0B_2C_0$
📕 Temperature 🛠 📕 Pattern	8	150	20	-2	+0-	180	175	177.5	-44.98482859	
	9	150	63	16	++0	186	190	188	-45.48364846	
- +				🚉 SN Ratio	IMD					
⊿ Mean 🕂 🖈										
🚄 SN Ratio 🖶 🛠				Filter	ب م	💌 8 Colu			•+-×	÷ xy ¾ ½ t= ^ Q G & X
				Row	^	Preci				
				NumericTranscende	ntal		perature			
				 Trigonomet 		Patte				
				 Character 	inc	-				
				 Comparisor 		4 +				$10 + 10 \times 10$ Moon $\begin{pmatrix} 2 \\ 2 \end{pmatrix}$
				 Conditional 		📕 Mea	n		-	10 • Log10 (Mean (, + _)
				Probability		🔟 SN R	atio			
OVERY				Discrete Pro						
MMIT				Statistical AS		Table	/ariables	~		JIII

Response Mean

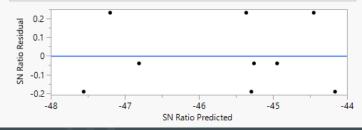
Studentized Residuals

Externally studentized residuals with 95% simultaneous limits (Bonferroni) in red, individual limits in green.

Scaled Estimates


Nominal factors expanded to all levels Scaled

	Scaled			
Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	193.83333	2.982976	64.98	0.0002*
Precipitation[0]	-5.333333	4.218566	-1.26	0.3335
Precipitation[8.5]	3	4.218566	0.71	0.5507
Precipitation[150]	2.3333333	4.218566	0.55	0.6358
Fine dust[0]	-3.166667	4.218566	-0.75	0.5312
Fine dust[20]	6.8333333	4.218566	1.62	0.2467
Fine dust[63]	-3.666667	4.218566	-0.87	0.4764
Temperature[-2]	-25.5	4.218566	-6.04	0.0263*
Temperature[16]	-9.666667	4.218566	-2.29	0.1490
Temperature[30]	35.166667	4.218566	8.34	0.0141*


Mean

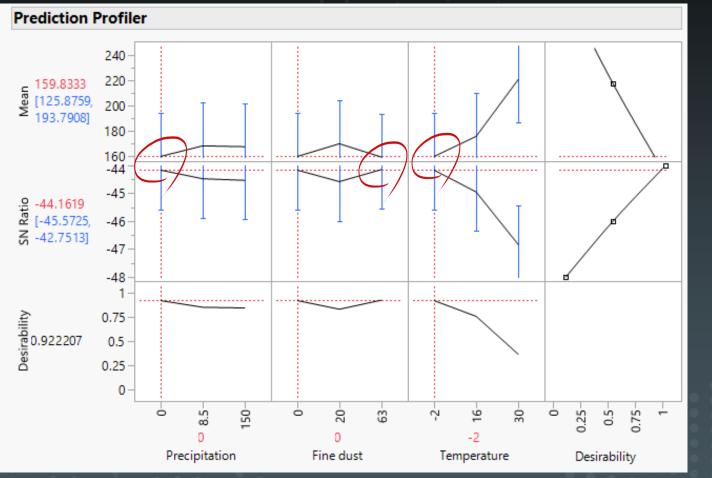
- C_0 : Mean \downarrow - C_2 : Mean \uparrow

Residual by Predicted Plot

Studentized Residuals

Externally studentized residuals with 95% simultaneous limits (Bonferroni) in red, individual limits in green.

Scaled Estimates


lominal factors expanded to all levels							
	Scaled						
Term	Estimate		Std Error	t Ratio	Prob> t		
Intercept	-45.67001		0.123915	-368.56	<.0001*		
Precipitation[0]	0.2259909		0.175242	1.29	0.3262		
Precipitation[8.5]	-0.084213		0.175242	-0.48	0.6783		
Precipitation[150]	-0.141777		0.175242	-0.81	0.5034		
Fine dust[0]	0.1309983		0.175242	0.75	0.5327		
Fine dust[20]	-0.284156		0.175242	-1.62	0.2464		
Fine dust[63]	0.1531572		0.175242	0.87	0.4743		
Temperature[-2]	1.1511463		0.175242	6.57	0.0224*		
Temperature[16]	0.3667724		0.175242	2.09	0.1714		
Temperature[30]	-1.517919		0.175242	-8.66	0.0131*		

SN Ratio

$-C_0$: SN Ratio \uparrow

- C_2 : SN Ratio \downarrow

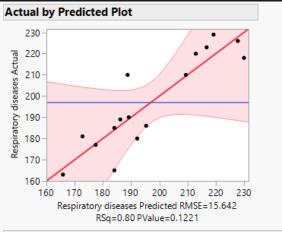
Conclusion
Mean : $A_0B_2C_0 \downarrow$ SN Ratio : $A_0B_2C_0 \uparrow$

imp

	Response Surface Design									
⊿F	Respor	nses								
,	Add Res	sponse 🔻	Remove	Number of Respon	nses]				
	Re	sponse Na	ime	Goal		Lower Limit	Upper Limit	Importance	U	nits
F	Respirate	ory diseas	es	Minimize		145	290			
	Factors	•								
-	Name Role Val			ues		Ur	nits			
1	Precipitation Continuous		0		90 50					
1			-2		30					
								I		
3 Fa	ctors									
-Cł	hoose a	Design –]				
N	lumber	Block	Center							
0	f Runs	Size	Points	Design Type						
	5		2	Box-Behnken						
1	6		2	Central Composite		jn 🥠				
2			6	CCD-Uniform Prec						
	0	6	6	CCD-Orthogonar B	tocks					
2	3		9	CCD-Orthogonal						

2nd RSM (Assume 1st model is not valid)

- Response : 1
- Factors : 3
- Design : CCD


۹ 🔪 💽					Respiratory
	Pattern	Precipitation	Fine dust	Temperature	diseases
1	-++	0	50	30	218
2	0A0	45	50	14	210
3	00a	45	25	-2	149
4	00A	45	25	30	223
5	+	90	0	-2	229
6	++-	90	50	-2	186
7	+-+	90	0	30	226
8		0	0	-2	163
9	A00	90	25	14	190
10	+++	90	50	30	210
11	a00	0	25	14	181
12	0a0	45	0	14	180
13	+	0	0	30	220
14	000	45	25	14	204
15	-+-	0	50	-2	165
16	000	45	25	14	206

DOE table

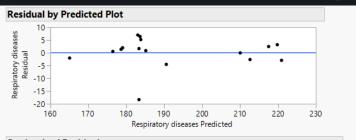
j'np

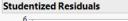
16 Legs

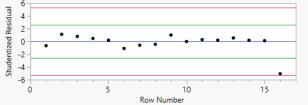
Effect Summary

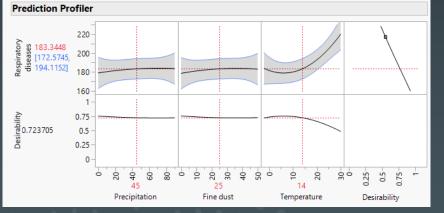
Source			Logworth				PValu
Temperatur	re(-2,30)	1.672				0.0213
Temperatur	re*Temp	perature	0.917				0.1209
Precipitatio	n*Temp	perature	0.878				0.1324
Precipitatio	on(0,90)		0.828				0.1484
Precipitatio	on*Fine	dust	0.797				0.1596
Fine dust*F	ine dus	t	0.275				0.5313
Fine dust(0	,50)		0.129	ī i			0.7428
Precipitatio	on*Preci	pitation	0.120	í .			0.7582
Fine dust*T	empera	ture	0.090				0.8119
Lack Of Fit	t						
		Sum	of				
Source	DF	Squar	es Mean S	Square	F Ratio		
Lack Of Fit	5	1267.94	22 2	53.588	1.2679		
Pure Error	1	200.00	00 2	200.000	Prob > F	1	
Total Error	6	1467.94	22		0.5848		
					Max RSq	$\mathbf{\nabla}$	
					0.9728		

LOF : P value > 0.05

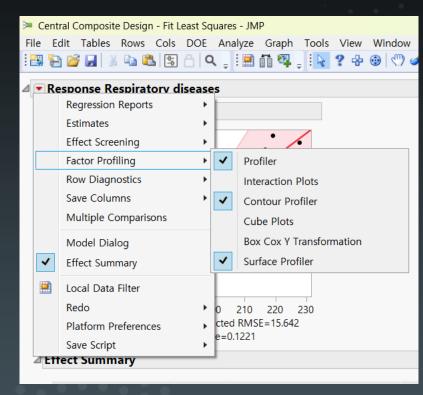

The lack of fit (LOF) is not significant.

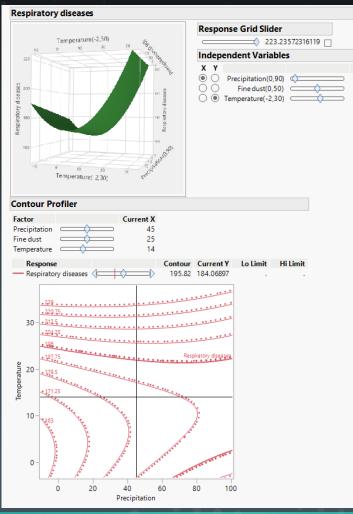

Accept the null hypothesis.


The model is valid.



Externally studentized residuals with 95% simultaneous limits (Bonferroni) in red, individual limits in green.


• Residuals : Random \rightarrow No abnormality


Studentized residual : < 2</p>

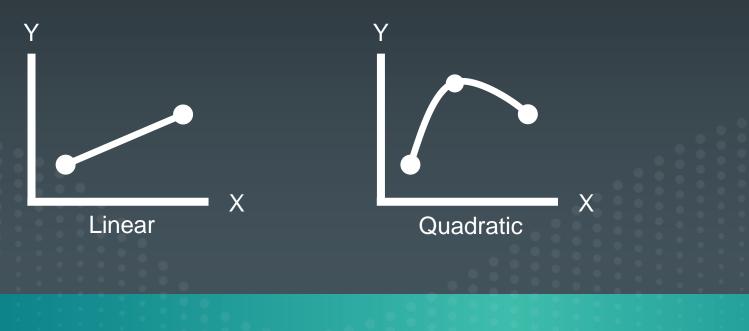
Curvature effect

Value Grid

0.8118

25

14


 Surface Profiler shows changes in rate of respiratory diseases

 Contour line shows rate of respiratory diseases

- If, LOF is not valid → Accept null hypothesis → Model is valid
- If LOF is valid, need to RSM analysis.

RSM vs Taguchi

	RSM	Taguchi
Purpose	Optimization of response values in the region of interest	Identify optimal conditions that are robust to the effects of noise
Input	Fewer test (using LOF), CCD/BBD	Orthogonal array, Loss function
Output	Response value behavior by input	Robust to noise

j'np

Thank you

jmp