Israel JMP[®] Users Group Meeting Online

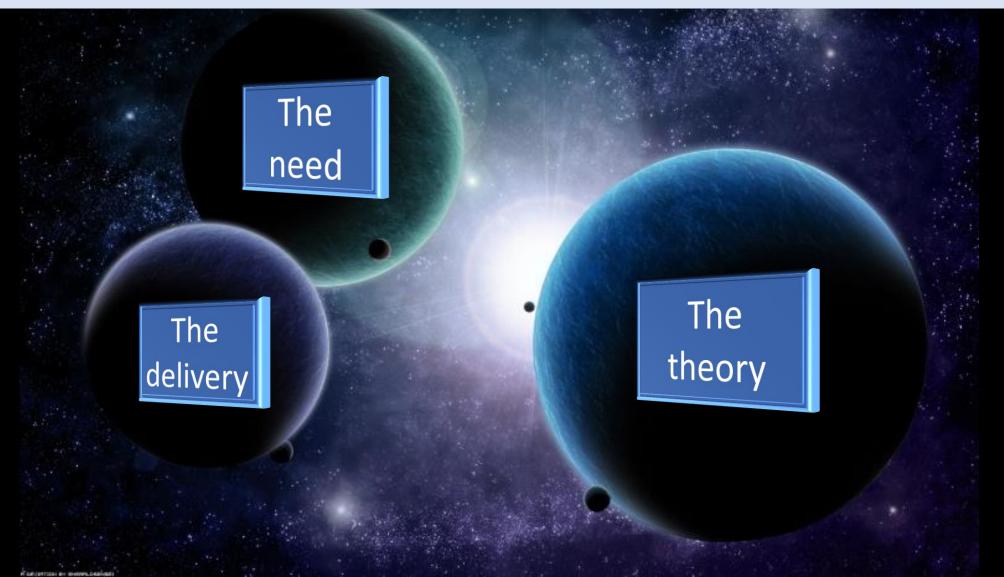
JMD. STATISTICAL DISCOVERY

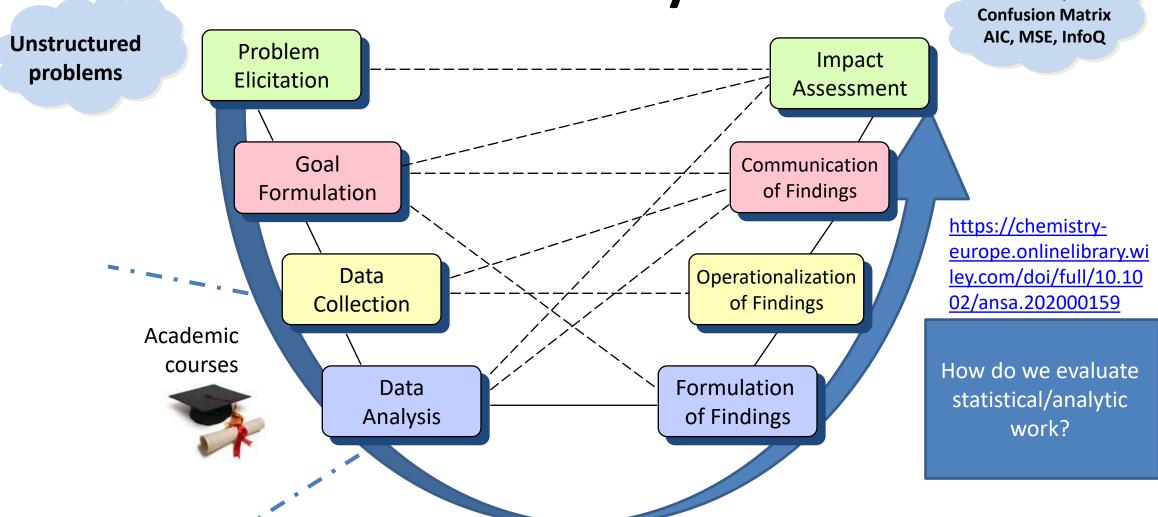
15 September 2022 | Online

11:00 - 13:00 IDT

https://www.jmp.com/en_gb/events/seminars/usergroup/israel-user-group-15sep22.html

Turning data into information, better decisions, and stronger organizations


A discussion on Information Quality and Quality by Design


Prof Ron S. Kenett

Turning data into information, better decisions, and stronger organizations

Statistics: A life cycle view

Kenett, R.S. (2015) Statistics: A Life Cycle View, *Quality Engineering* (with discussion), 27(1), pp. 111-129.

Lift curves, ROC

Industrial Statistics

Modern Industrial Statistics

THIRD EDITION

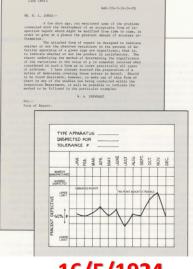
with Applications in R, MINITAB and JMP

RON S. KENETT SHELEMYAHU ZACKS

With contributions from Daniele Amberri

STATISTICS IN PRACTICE

Statistical Methods


Design of Experiments, Reliablity

Statistical Process Control

Shewhart

The

methods

16/5/1924

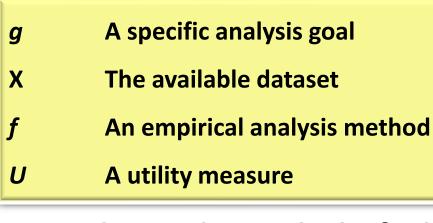
The Quality

Laddei

WILEY

Sampling

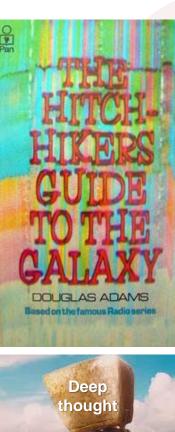
Descriptive Statistics



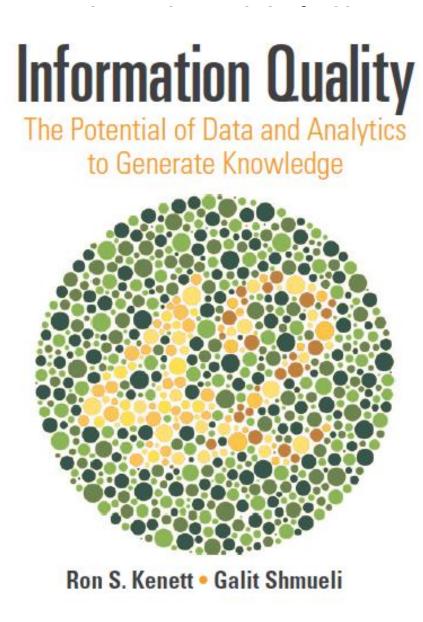
- Big data
- Artificial intelligence
- Data science
- Predictive analytics

Information Quality (InfoQ)

The potential of a particular dataset to achieve a particular goal using a given empirical analysis method


InfoQ(f,X,g) = U(f(X|g))

Kenett, R.S. and Shmueli, G. (2014) On Information Quality, *Journal of the Royal Statistical Society, Series A* (with discussion), Vol. 177, No. 1, pp. 3-38, 2014. <u>http://ssrn.com/abstract=1464444</u>.


The

information

the "Answer to the Ultimate Question of Life, the Universe, and Everything,"

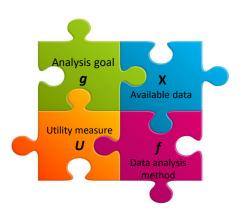
WILEY

InfoQ Dimensions

1.Data resolution

2.Data structure

3.Data integration

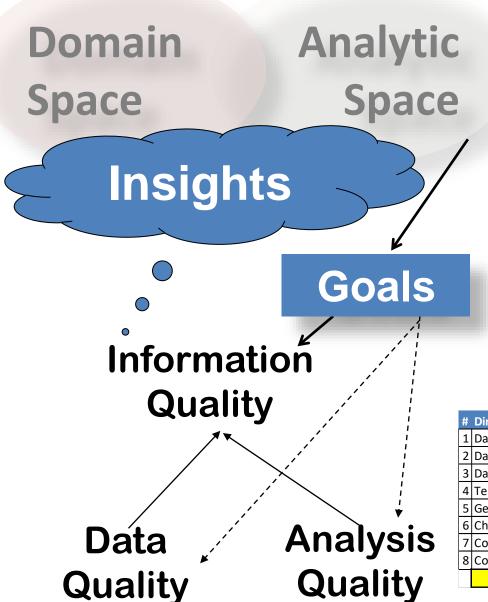

4. Temporal relevance

5. Chronology of data and goal

6.Generalizability

7. Operationalization

8.Communication


The information

What

InfoQ(f,X,g) = U(f(X | g))

InfoQ Dimensions

1.Data resolution

2.Data structure

3.Data integration

4.Temporal relevance

5. Chronology of data and goal

6.Generalizability

7. Operationalization

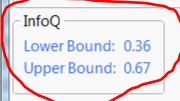
8.Communication

	Dimension	Note	Value	Index
	Data resolution		5	1.0000
)	Data structure		4	0.7500
;	Data integration		5	1.0000
ŀ	Temporal relevance		5	1.0000
;	Generalizability		3	0.5000
;	Chronology of data and goal		5	1.0000
,	Concept operationalization		2	0.2500
3	Communication		3	0.5000
	InfoQ Score =	0.68		

The

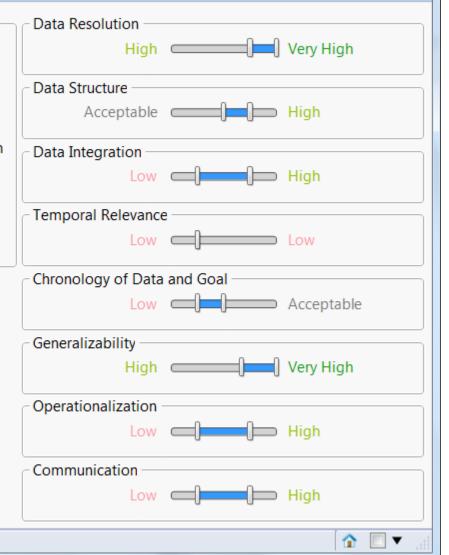
information

InfoQ Score = $[d_1(Y_1) \ d_2(Y_2) \ \dots \ d_8(Y_8)]^{1/8}$

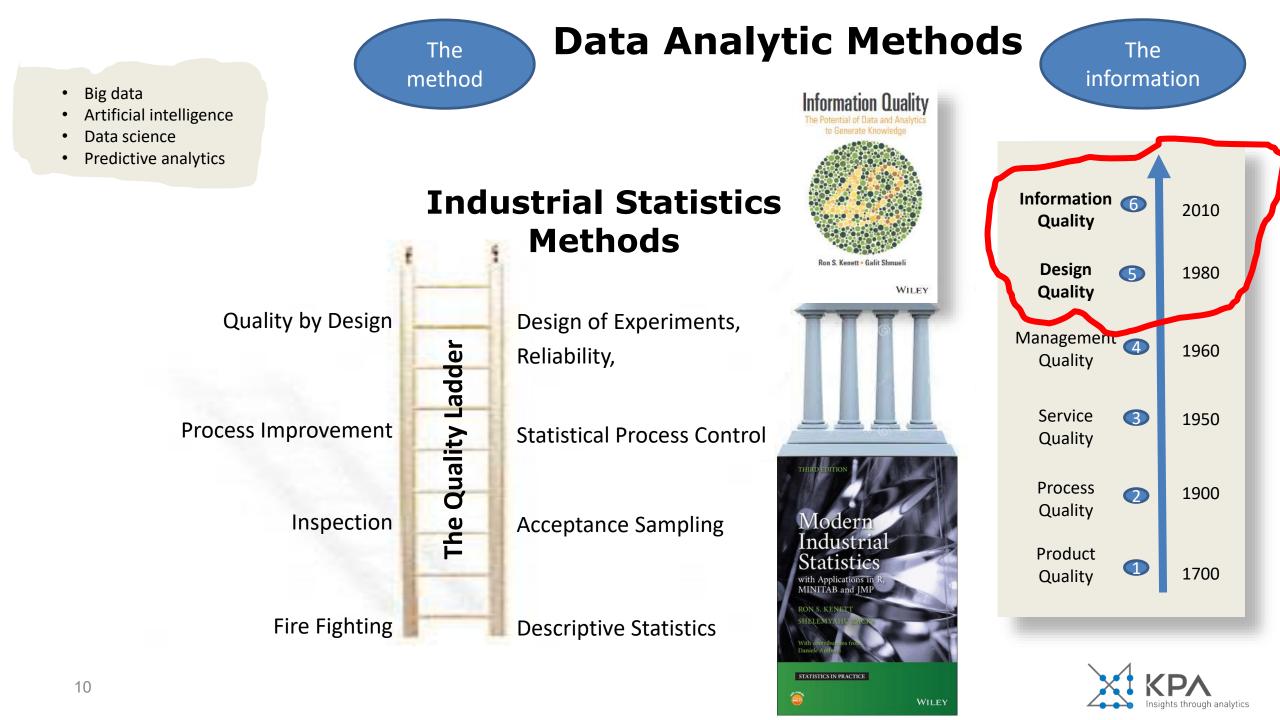


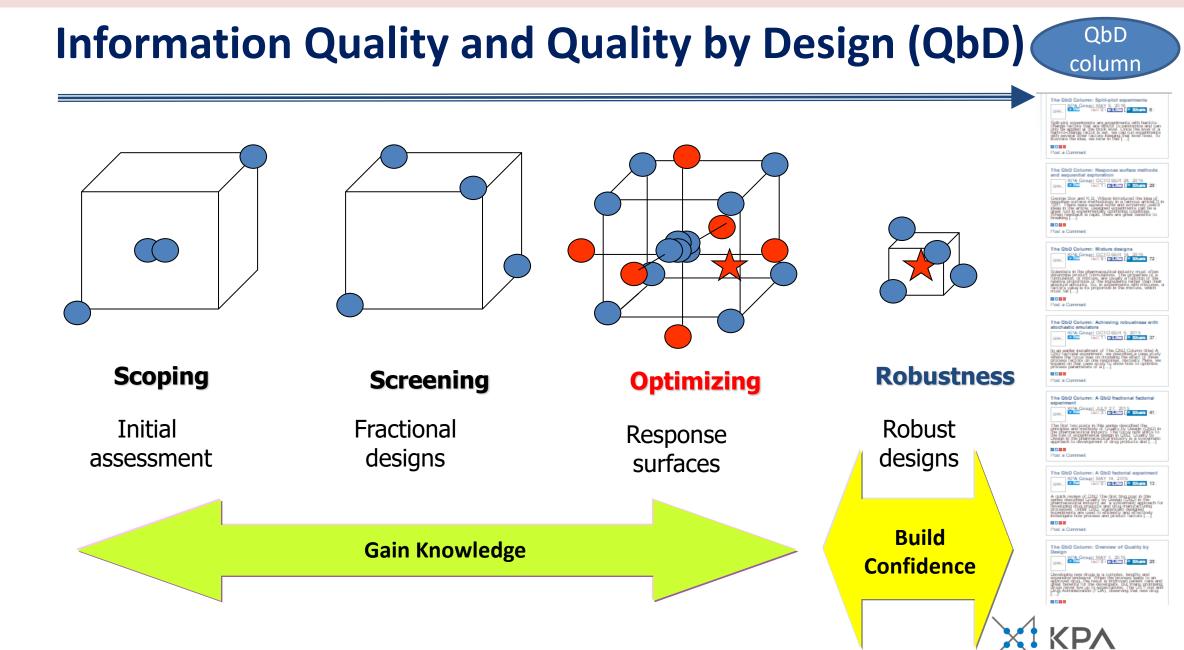
The information

Help This is a rating-based approach to quantifying InfoQ that scores each of the eight dimensions. This coarse grained approach rates each dimension on a 5 point scale, with 5 indicating "Very High" achievement in that dimension.

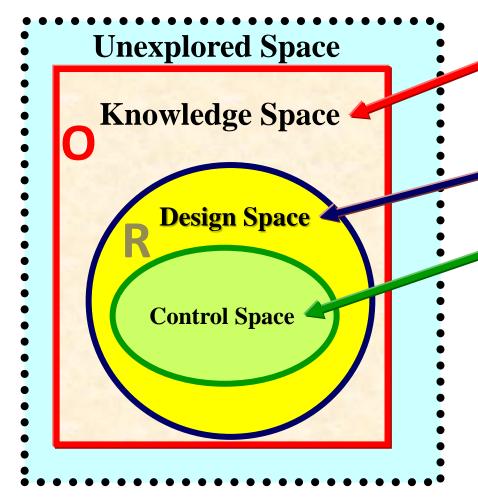

The ratings are then normalized into a desirability function for each dimension, which are then combined to produce an overall InfoQ score using the geometric mean of the individual desirabilities.

By dragging the slider handles, each dimension can be assigned a plausible range of ratings, or a specific rating.


E InfoQ - JMP Pro



https://community.jmp.com/t5/JMP-Add-Ins/Calculate-InfoQ-score-with-JMP/ta-p/34898



https://community.jmp.com/t5/JMP-Blog/A-QbD-update-Current-and-future-trends-in-Quality-by-Design/ba-p/258425

Background

Design Space, or, "Region of Immediate Interest"

Aggregated knowledge, past experiments, manufacturing experience, data from lab tests

Proven Acceptable Range

Normal Acceptable Range

Usually there will be a large "**operability region**", **0**, of unknown, or vaguely known, extent within which it is possible to carry out experiments and within this, at a given stage of experimentation, a smaller "**region of immediate interest**", **R**.

G. E. P. Box and N. R. Draper (1959) *A Basis for the Selection of a Response Surface Design,* Journal of the American Statistical Association, Vol. 54, No. 287, pp. 622-654

Blog 2: Factorial experiments

Responses: 1) Assay of active ingredient, 2) In vitro permeability lower confidence interval,
3) In vitro permeability upper confidence interval,
4) Assay of methylparaben, 5) Assay of propylparaben, 6) Viscosity and 7) pH values.

Factors: A) Temperature of reaction,B) Blending time and C) Cooling time.

https://community.jmp.com/t5/JMP-Blog/The-QbD-Column-A-QbD-factorial-experiment/ba-p/30592

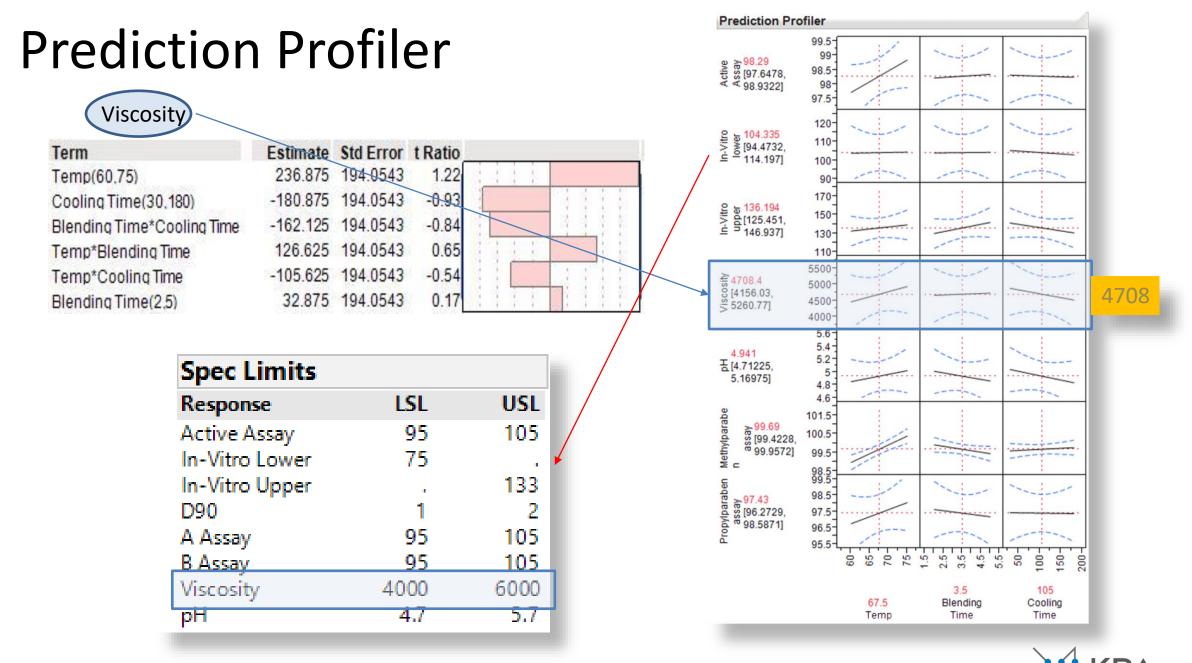
 Prod a Carrental

 Image: Contract Contract Response and re

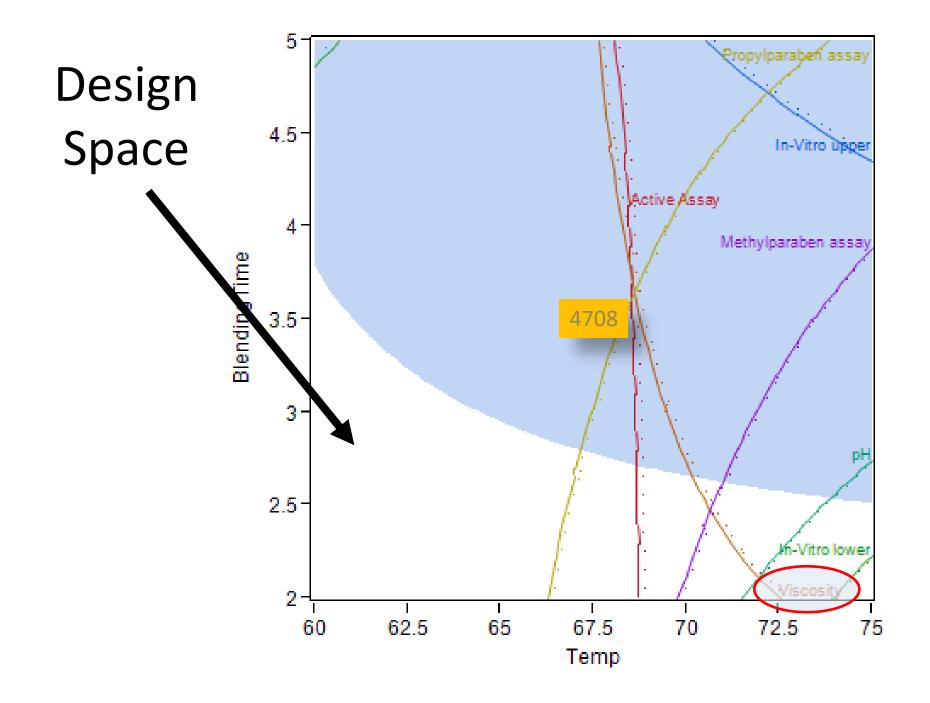
Set up a

Design space

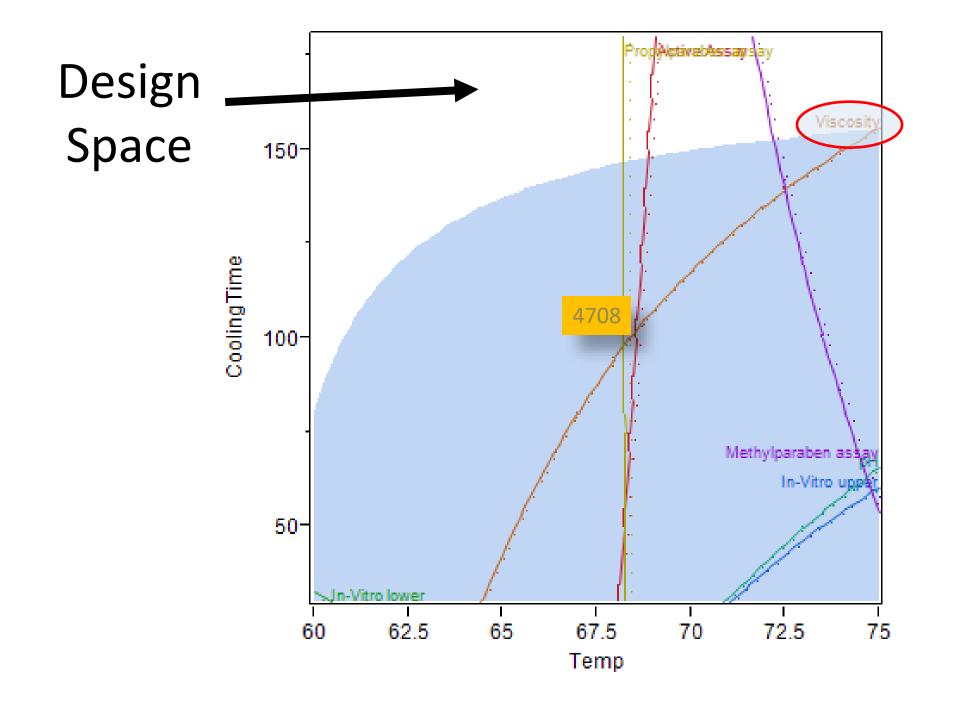
Factors, Levels and Responses


🗱 DoE in QbD set1 - JMP Pro

File Edit Tables Rows Cols DOE Analyze Graph Tools Add-Ins View Window Help


183 🔁 💕 🔲 🗴 🖦 🖎 🖨 🖄 🖕 119 🕨 🛤 🛤 🛤 端 🎞 🖬 🔠 🛅 🕮 🤒 🖕

<u> </u>		Formulation		Blending Time	Cooling Time	Active Assav	In-Vitro lower	In-Vitro upper	Methylparab en assay	Propylparab en assay	Viscosity	рH
lotes C:\Ron Laptop\KPA\Sta		1 D078	60	2		97.4	93.81	126.07	98.8	97.2	4542	4.9
		2 D081	67.5	3.5	105	97.6	96.54	119.4	99.4	95.8	4263	4.69
		3 D082	75	2	180	99.3	110.08	134.13	101.5	99	4725	4.91
Columns (11/0) Formulation	4	4 D077	75	5		98.9	100.71	171.68	99.9	97.5	5617	4.9
Temp		5 D080	60	5	180	98	94.15	128.16	98.9	96.8	4204	4.77
Blending Time		6 D079	60	2		97.7	107.71	138.55	99.1	96.8	4875	4.88
Cooling Time		7 D075	75	2		99.2	106.94	129.82	100.6	98.8	5133	5.5
Active Assay		8 D084	67.5	3.5	105	97.6	108.45	137.44	99.4	96.7	4008	4.94
🚄 In-Vitro Iower		9 D083	75	5	180	98.7	102.55	130.36	99.9	98.2	4879	4.92
🚄 In-Vitro upper		10 D076	60	5		98.5	122.41	146.33	99.4	97.5	4838	5
Methylparaben assay	l E			-								-
Propylparaben assay												
⊿ Viscosity ⊿ pH												
a pri												
						4140).4	465	6.15			
		Experim	entai			71	ý.	7				
		2552				/		/				
Rows		arra	У		vo 461	15.15		5553.4				
All rows 10												
All rows 10 Selected 0												
					e							
Selected 0 Excluded 0 Hidden 0					Time							
Selected 0 Excluded 0					gTime							
Selected 0 Excluded 0 Hidden 0					dingTime							
Selected 0 Excluded 0 Hidden 0					endingTime		.15	46	61.4 100			
Selected 0 Excluded 0 Hidden 0					Blending Time	4652	.15	46	61.4 180			
Selected 0 Excluded 0 Hidden 0					BlendingTime		.15	46		Time		
Selected 0 Excluded 0 Hidden 0					10 mm	4652			Cooling	Time		☆ □
Selected 0 Excluded 0 Hidden 0					10 mm			46	Cooling	Time		↑ □

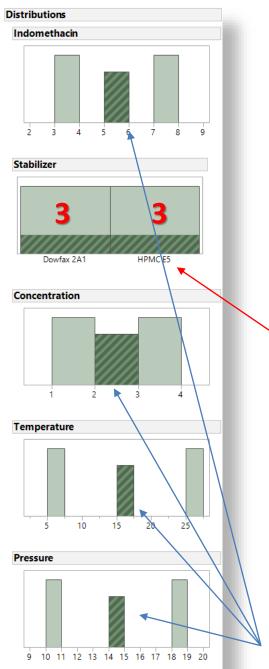


nsights through analytics

Blog 3: Fractional Factorial Experiments

We explore the process of preparing **nanosuspension** formulations for water insoluble drugs. Nanosuspensions involve colloidal dispersions of discrete drug particles, which are stabilized with polymers and/or surfactants. This permits to achieve improved bioavailability by using small particles, which increase the dissolution rate for drugs with poor solubility. The process begins with larger particles. Then milling is used to reduce their size. The study examines the use of microfluidization at the milling stage.

https://community.jmp.com/t5/JMP-Blog/The-QbD-Column-A-QbD-fractional-factorialexperiment/ba-p/30619

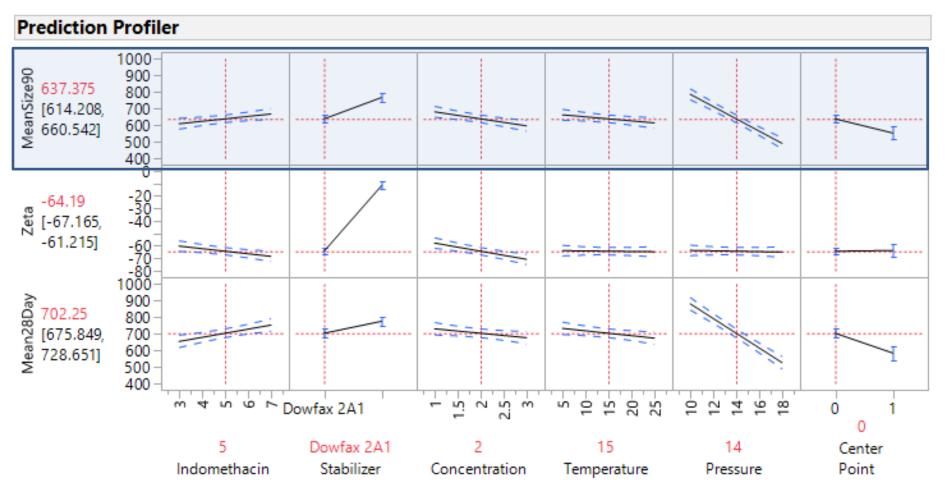

Fractional Factorial Experiments

The experiment is a two-level fractional factorial with **six center points**. The fractional factorial used here is a 2⁵⁻¹ design set at the extreme levels of each of the quantitative factors. The 2⁵⁻¹ design permits estimation of all the main effects and all the two-factor interactions.

We derive a formal significance test of nonlinearity by adding an "indicator" column which has the value 1 for the center points and 0 for all other points.

Edit	Tables	Rows	Cols	DOE	Analyze	Graph	Tools	View	Window	Help	
Scree	ning D	esign									
Respo	nses										
Add Res	sponse 🔻	Remo	ove	lumber	of Respon	ises					
	sponse N	Jame			oal		ower Lin	nit	Upper Lin	nit	Importance
Y					Aaximize						
optional	l item								•		•
Factor	s										
Continu	ious Dis	croto Ni	morie		egorical 👻	Remo		I N Fact	ors 1		
Continu	ious Dis	crete Nu	umenc		egorical 🔻			IN Fact	ors 1		
Name	2		Role			Value	s				
	ethacin		Contin			3			7		
Conc	entration	I	Contin	nuous		1			3		
Conc Press	entration ure	I	Contin Contin	nuous		1 10			3 18		
Conc Press	entration ure perature	I	Contin Contin Contin	uous uous uous		1 10 5			3 18 25		
Conc Press Temp	entration ure erature izer	1	Contin Contin	uous uous uous		1 10	ax		3 18		
Conc Press Temp Stabil	entration ure perature izer Factorial		Contin Contin Contin Catego	uous uous uous		1 10 5	ax		3 18 25		
Conc Press Temp Stabil	entration ure perature izer		Contin Contin Contin Catego	uous uous uous		1 10 5	<u>ax</u>		3 18 25		
Conc Press Temp Støbil sctional F Display ar	entration ure perature izer Factorial	y Desigr	Contin Contin Contin Catego	uous uous uous		1 10 5	8X		3 18 25		
Conc Press Temp Stabil Display ar Code	entration ure perature izer Factorial nd Modif	y Desigr gn	Contir Contir Contir Catego	uous uous uous		1 10 5	ax		3 18 25		
Conc Press Temp Stabil octional F Display ar Code Desig	entration ure erature izer Factorial nd Modif d Desig	y Desigr gn	Contir Contir Contir Catego	uous uous uous		1 10 5	ax		3 18 25		
Conc Press Temp Støbil Display ar Code Desig	entration ure berature izer Factorial nd Modif of Desig on Eval ptions	y Desigr gn	Contir Contir Contir Catego	nuous nuous nuous prical		1 10 5			3 18 25		
Conc Press Temp Stabil octional F Display ar Code Desig	entration ure berature izer Factorial nd Modif of Desig on Eval ptions	y Desigr gn	Contir Contir Contir Catego	nuous nuous nuous prical	lomize	1 10 5	ax •		3 18 25		
Conc Press Temp Stepil Display an Code Desig Output O Run Orde	entration ure berature izer Factorial nd Modif of Desig on Eval ptions	y Desigr gn uation	Contin Contin Contin Catego	Rand	lomize	1 10 5			3 18 25		
Conc Press Temp Støbil octional F Display an Code Desig Output O Run Orde Make JMI	entration ure berature izer Factorial nd Modif cd Desig gn Eval ptions er:	y Desigr gn uation	Contin Contin Contin Catego	Rand	lomize	1 10 5			3 18 25		
Code Code Code Desig Output O Run Orde Make JM	entration ure perature izer Factorial nd Modif of Desig on Eval ptions er: P Table fr	y Desigr gn uation rom desi Points:	Contin Contin Contin Catego	Rand	_	1 10 5			3 18 25		
Conc Press Temp Stabil actional P Display an Code Display an Code Datput O Run Orde Make JMI Number of	entration ure perature izer Factorial nd Modif ed Desig on Eval ptions er: P Table fr of Center of Replica	y Desigr gn uation rom desi Points:	Contin Contin Contin Catego	Rand	5	1 10 5			3 18 25		
Conc Press Temp Stabil octional F Display ar Code Datput O Run Orde Make JMI Number o Number o Make Ta	entration ure perature izer Factorial nd Modif ed Desig on Eval ptions er: P Table fr of Center of Replica	y Desigr gn uation rom desi Points:	Contin Contin Contin Catego	Rand	5	1 10 5			3 18 25		
Conc Press Temp Stabil actional P Display an Code Display an Code Datput O Run Orde Make JMI Number of	entration ure perature izer Factorial nd Modif ed Desig on Eval ptions er: P Table fr of Center of Replica	y Desigr gn uation rom desi Points:	Contin Contin Contin Catego	Rand	5	1 10 5			3 18 25		

Center points



Parameter Estimates

	Sorted Parameter Estimates	Γ	MeanSiz	e90 <	mean particle size after 90 minutes of milling, before storage.	
	Term	Estimate	Std Error	t Ratio	Prob> t	
	Pressure	-38.09375	1.475053	-25.83	<.0001*	
	Stabilizer[Dowfax 2A1]	-81	5.649023	-14.34	0.0001*	
	Concentration	-38	5.900212	-6.44	0.0030*	
➡	Center Point[0]	25.6875	5.649023	4.55	0.0104*	
	Indomethacin	9.8125	2.950106	3.33	0.0292*	
	Stabilizer[Dowfax 2A1]*Center Point[0]	17	5.649023	3.01	0.0396*	
	Temperature	-1.5875	0.590021	-2.69	0.0546	
	(Temperature-15)*(Pressure-14)	0.278125	0.147505	1.89	0.1324	
	(Indomethacin-5)*Stabilizer[Dowfax 2A1]	4.875	2.950106	1.65	0.1738	
	Stabilizer[Dowfax 2A1]*(Temperature-15)	-0.85	0.590021	-1.44	0.2231	
	(Indomethacin-5)*(Pressure-14)	1.046875	0.737526	1.42	0.2288	
	(Concentration-2)*(Pressure-14)	1.9375	1.475053	1.31	0.2593	
	(Indomethacin-5)*(Concentration-2)	3.625	2.950106	1.23	0.2865	
	(Indomethacin-5)*(Temperature-15)	0.34375	0.295011	1.17	0.3087	
	Stabilizer[Dowfax 2A1]*(Pressure-14)	1.125	1.475053	0.76	0.4881	
	Stabilizer[Dowfax 2A1]*(Concentration-2)	-4.125	5.900212	-0.70	0.5230	
	(Concentration-2)*(Temperature-15)	0.025	0.590021	0.04	0.9682	
					Insights through analytics	

Prediction Profiler

Blog 4: Robustness with Stochastic Emulators

Quality Technology & Quantitative Management Vol. 3, No. 2, pp. 161-177, 2006

Achieving Robust Design from Computer Simulations

Ron A. Bates¹, Ron S. Kenett², David M. Steinberg³ and Henry P. Wynn⁴ ^{1,4}London School of Economics, London, UK ² KPA Ltd., Raanana, ISRAEL ³Tel Aviv University, Tel Aviv, ISRAEL and KPA Ltd. (*Received December 2004, accented July 2005*)

Perform robust design analysis

- Bad
 Optimal
 Bobust
- 3. Robust

KPA Group! MAY 9, 2018

https://community.jmp.com/t5/JMP-Blog/The-QbD-Column-Achieving-robustness-with-stochasticemulators/ba-p/30644

Robustness with Stochastic Emulators

The study refers to a formulation of a generic product designed to match the properties of an existing brand using in vitro tests. A 90% confidence interval for the ratio of the median in vitro release rate in the generic and brand products is computed, and expressed as a percentage. If the interval falls within the limits of **75% to 133.33%**, the generic and brand products are considered equivalent.

The **eight responses** listed in the SUPAC^{*} standard that are considered in setting up the bioequivalence process design space are: 1) Assay of active ingredient, 2) In vitro release rate lower confidence limit, 3) In vitro release rate upper confidence limit, 4) 90th percentile of particle size, 5) Assay of material A, 6) Assay of material B, 7) Viscosity and 8) pH values.

Three process factors are considered: A) Temperature of reaction, B) Blending time and C) Cooling time. The experimental design consisted of a 2³ factorial experiment with 2 center points.

*Scale-up and Post-Approval Changes

Key Steps

The key steps of the stochastic emulator approach are as follows:

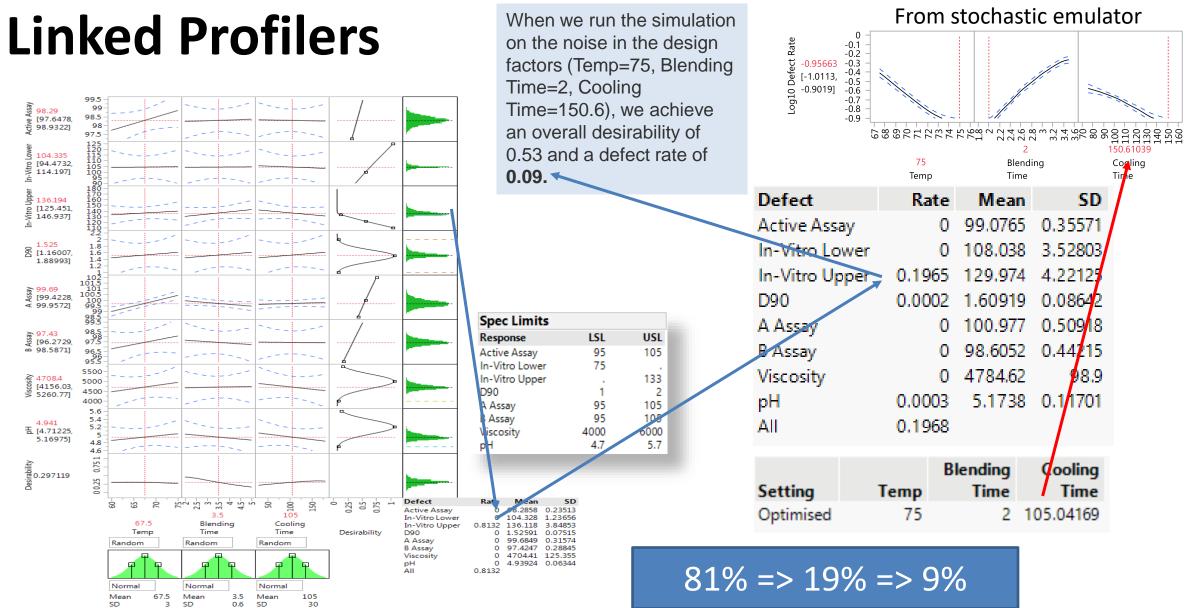
1. Begin with a model that relates the input factors to the system outputs.

2. Characterize the uncertainty in the system. Describe how the input factors are expected to vary about their nominal process settings.

3. Lay out an experimental design in the **input factors** at nominal settings.

4. Generate **simulated** data from the noise distributions at all the nominal settings with a **space-filling design**.

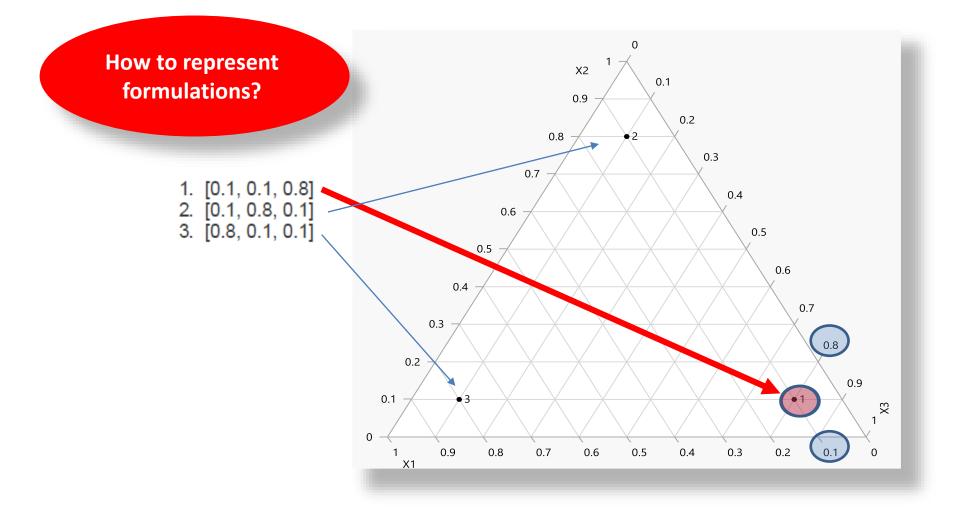
5. **Summarize** the simulated data at each nominal setting by critical response variables (like desirability and defect rate in our study).


6. Construct statistical models that relate critical response variables to the design factor settings using **the Gaussian process model** option in JMP.

7. **Optimize** the choice of the factor settings for all critical outcomes. Here we want the process to have both on target performance and robustness (JMP allows us to do this by linking and optimizing profilers).

Robustness Design Analysis

nent 👂 🔍		Blending	E A A		In-Vitro	In-Vitro	Daa		design analysis
/0)	mp 1 60	2	ing Time Activ	97.4	Lower 93.81	Upper 126.07	D90 1.36	A Assay 98.8	As Report: Fit Model - JMP Pro
ne \star	2 67.5	3.5	105	97.6	96.54	119.4	1.69	99.4	<u>File E</u> dit <u>T</u> ables <u>R</u> ows <u>C</u> ols <u>D</u> OE <u>A</u> nalyze <u>G</u> raph T <u>o</u> ols Add-I <u>n</u> s <u>V</u> iew <u>W</u> indow <u>H</u> elp
*	3 75	2	180	99.3	110.08	134.13	1.36	101.5	
*	4 75 5 60	5	30 180	98.9 98	100.71 94.15	171.68 128.16	1.02 1.69	99.9 98.9	
er *	6 60	2	180	97.7	107.71	138.55	1.03	99.1	Select Columns Pick Role Variables Personality:
	7 75	2	30	99.2	106.94	129.82	1.69	100.6	Standard Least Squares
	8 67.5	3.5	105	97.6	108.45	137.44	2.03	99.4	Temp P Active Assay Emphasis: Effect Screening
-	9 75 10 60	5	180 30	98.7 98.5	102.55 122.41	130.36 146.33	2.03 1.36	99.9 99.4	ABlending Time
				5015			2100		ACooling Time Active Assay A Assay
ne									In-Vitro Lower Bassay Run
									In-Vitro Upper Viscosity Recall Keep dialog open
C									Appl Assay Remove
Sp	ec Lir	πιτs							B Assay
Res	ponse			LS	1	US			Viscosity PH Freq optional numeric
							_		Validation optional
Act	ive Ass	say		9	5	10	5		By optional
In-\	/itro Lo	ower		7	5				
In A	litro II	nnor			_	13			Construct Model Effects
	/itro U	pper					_		Add Temp Blending Time
)			'	1		2		Cross Cooling Time
D90	ssav			9	5	10	5		Nest Temp*Blending Time
				9		10			Temp*Cooling Time Macros ▼ Blending Time*Cooling Time
ΑA					2	10	2		
A A B A	ssay ssay			400	_	600	_		< III

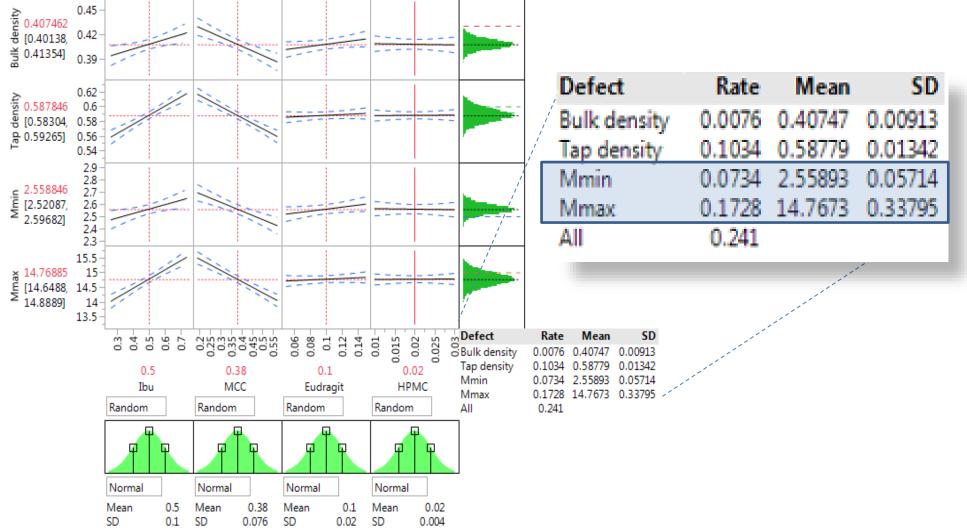

Blog 5: Mixture Designs

The properties of a formulation, or mixture, are a function of the relative proportions of the ingredients rather than their absolute amounts. **This type of data is called mixture or compositional data (CoDa)** In experiments with mixtures, a factor's value is its proportion in the mixture, which must fall between zero and one.

We use here an extreme vertices design with four components to compute formulation compositions with the following constraints applied to the weight fractions of corresponding formulation components: for **Ibuprofen**, 0.25≤wt. fraction≤0.75; for **HPMC**, 0.01≤wt. fraction≤0.03; for **MCC**: 0.19≤wt. fraction≤0.57; for **Eudragit** L 100-55: 0.05≤wt. fraction≤0.15.

https://community.jmp.com/t5/JMP-Blog/The-QbD-Column-Mixture-designs/ba-p/30651

Fit Model - JMP Pro		_ D X
✓ ■ Model Specification		
Select Columns	Pick Role Variables	Personality: Standard Least Squares Emphasis: Effect Screening
 Eudragit HPMC Bulk density Tap density Mmin Mmax 	Weight optional numeric Freq optional numeric Validation optional By optional By optional Construct Moder Effects Add Ibu& RS& Mixture McC& RS& Mixture McC& RS& Mixture Nest Ibu/RS& Mixture Macros ▼ Degree 2 Attributes ▼ Transform ▼ No Intercept	Help Run Recall Keep dialog open Remove



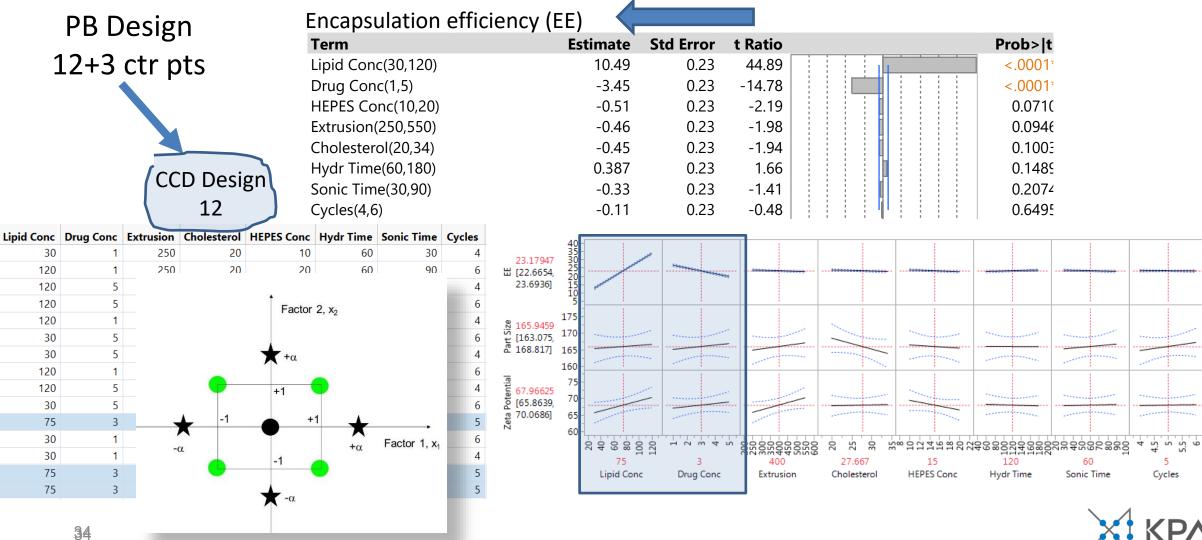
With the set up of **Ibuprofen=0.5**, **MCC=0.38**, **Eudragit=0.1** and **HPMC=0.002**, and the variability structure with means at set up points and variability with normal distributions and standard deviations determined by experimental range, one gets an overall defect rate of **24%**.

The Mmax and Mmin responses generated by these simulations have respective means and standard deviations (in brackets) of 14.77 (0.34) and 2.56 (0.06). These two responses induced failure rates of 17% and 7% respectively.

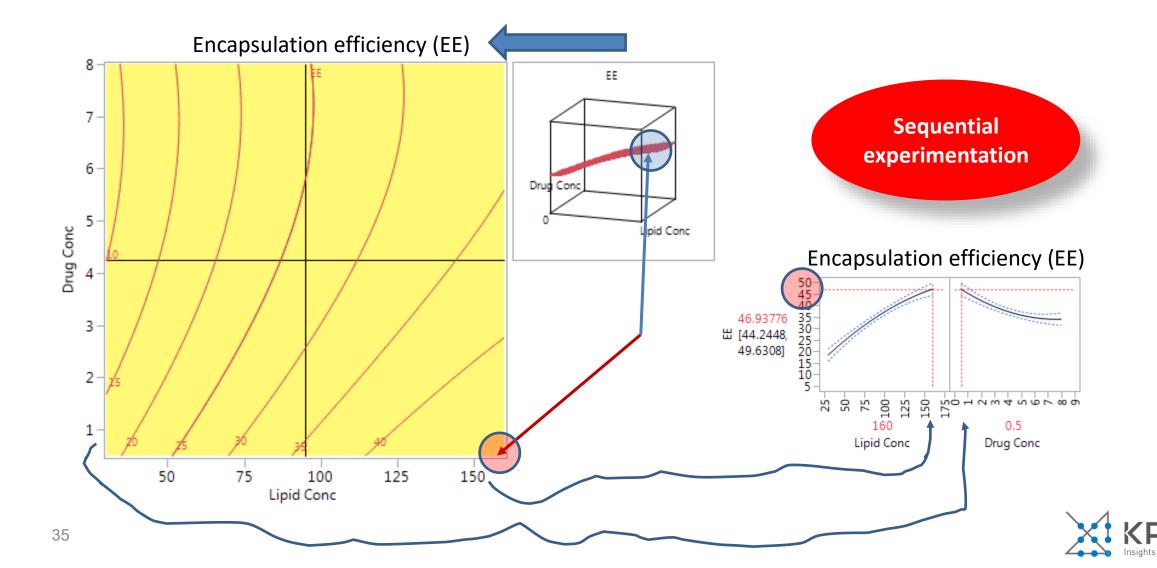
In the simulation experiments, the four factors (components) were sampled independently from their specific variability distributions. JMP also makes it possible to include a correlation structure between the sampled values.

Blog 6: Sequential Exploration

The goal is to improve the drug delivery system for a class of molecules by using liposome formulations. Such formulations were expected to bring benefits by improving the ability to target the activity of the molecule in the body. However, previous efforts had yielded methods that were not commercially viable, primarily because an important critical quality attribute (CQA), encapsulation efficiency, was too low.


The experimental team focused on three CQA's in this sequence of experiments: **encapsulation efficiency** (with a goal of at least 20%); **particle size** (with a target range of 100-200 nm); and **storage stability** at 4^o C.

A risk analysis of process factors produced a list of 8 factors: lipid concentration; drug concentration; extrusion pressure; cholesterol concentration; buffer concentration; hydration time; sonication time; and number of freeze-thaw cycles.


https://community.jmp.com/t5/JMP-Blog/The-QbD-Column-Response-surface-methods-andsequential/ba-p/30654

Sequential Exploration

Sequential Exploration

Blog 7: Split-plot Experiments

The experiment compared, on animal models, several methods for the treatment of severe chronic skin irritations. Each treatment involved an orally administered antibiotic along with a cream that is applied topically to the affected site. There were **two types of antibiotics, and the cream was tested at four concentrations and three timing strategies**.

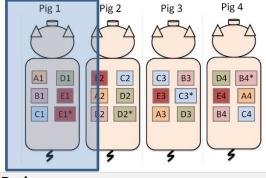
The experiment was run using four experimental animals, each of which had eight sites located on their backs from the neck down. Thus, the sites are "blocked" by animal. For each animal, we can randomly decide which sites should be treated with which concentration by timing option. The antibiotics are different. They are taken orally, so each animal could get just one antibiotic, and it would then apply to all the sites on that animal.

https://community.jmp.com/t5/JMP-Blog/The-QbD-Column-Split-plot-experiments/ba-p/30716

Split-plot Experiments

Effective treatment combinations will have low values of AUC. There is a clear effect associated with concentration (p-value=0.002). The effect for timing has a p-value of 0.076. The F-statistic for comparing the two antibiotics is larger than the one for timing. However, it has a p-value of 0.078, close to the one for timing.

The reason is that the antibiotic comparison is at the "whole plot" level and so has more uncertainty, and much lower power, than the comparisons of timing strategies and concentrations.


The topical cream study provided valuable information that the cream is more effective at higher concentrations.

The use of multiple sites per animal permitted "within animal" comparisons of the concentrations and timing, so that the positive effect of increasing concentration could be discovered with a small number of animals. The "between animal" variation was only about 1/3 as large as the "within animal variation." This was a surprise, as we had expected that there would be substantial inter-animal variation.

Analysis of Random Effects

Hard to change (HTC) factors

Factors Add Factor Remove Add N Factors 1 Name Role Changes Values ▲Antibiotic Categorical Hard 12 Y Timing Categorical Easy ✓ Concentration Categorical Easy

Design	
--------	--

Run Whole Plots Antibiotic Timing Concentration

1	1	В	4	4
2		В	4	6
3 4 5	1	В	4	2 2 0
4	1	В	12	2
5	1	В	12	0
6	1	В	2	4
7	1	В	2	6
8	1	В	12 2 2 2 2	0
9	2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3	A A	2	2
10	2	Α	12	2 0 6
11	2	Α	12	6
12	2	Α	4	0
13	2	Α	12 2 2	4
14	2	А	2	4
15	2	Α	2	6
16	2	А	4	2
17	3	В	4	2 6 2 6
18	3	В	4	2
19	3	В	12	6
20	3	В	12 2 12 2 4	4
21	3	В	12	4
22	3	В	2	0
23	3	В	4	0
24	3	В	2	2
25	4	Α	12	2 2
26	4	А	4	4
27	4	Α	12	0
28	4	Α	2	
29	4	Α	4	2 6
30	4	Α	2	6
31	4	Α	2	0
32	4	Α	12	4

REML Variance Component Estimates												
Random		Var				Pct of						
Effect	Var Ratio	omponent	Std Error	95% Lower	95% Upper	Total						
Animal	0.3369366	0.0009742	0.0014479	-0.001864	0.003812	25.202						
Residual		0.0028914	0.0011798	0.0014872	0.0078735	74.798						
Total		18656	0.0017459	0.0018763	0.0120769	100.000						
-2 LogLikeli	hood = 5.203110											

Note: Total is the sum of the positive variance components. Total including negative estimates = 0.0038656

Fixed Effect Tests												
Source	Nparm	DF	DFDen	F Ratio	Prob > F							
Antibiotic	1	1	1.82	13.1960	0.0783							
Timing	2	2	12.01	3.2182	0.0760							
Concentration	3	3	12.06	9.2033	0.0019*							
Antibiotic*Timing	2	2	12.01	0.3831	0.6898							
Antibiotic*Concentration	3	3	12.03	0.7022	0.5687							
Timing*Concentration	6	6	12.47	0.6574	0.6849							

<u>https://community.jmp.com/t5/Discovery-Summit-Europe-2021/Maximizing-Data-</u> <u>Science-Success-with-Information-Quality-InfoQ/ta-p/349217</u>

2021-EU-45MP-750

Maximizing Data Science Success with Information Quality (InfoQ) and JMP[®]

Analytic work in Industry 4.0 applications: A checklist

Created: MAY 6, 2020 12:59 PM

Consider this hypothetical: You work for a company developing and manufacturing medical devices. The COVID-19 pandemic created a worldwide shortage of ventilators. Since your company has recently implemented a major digital transformation strategy to meet Industry 4.0 standards, you are able to predict operating failures in alternative assembly lines, provide online monitoring of wave soldering processes, and gather focused statistics on assembly defects from automated visual inspection robots.

The flexibility acquired by this digital transformation permitted the rapid conversion of the company's production lines to make the much-needed mechanical ventilators. A major element in this transformation is the application of analytics, since the flexibility described above requires high-level analytic capabilities. Keep reading for additional background and a checklist for reviewing analytic-based

The Checklist

These are the eight questions to ask when reviewing an analytic study after clarifying the goals and utility.

Dimension	Questions	Blog/Analytic- work-in-Industry-4-
Data resolution	Is the data granularity adequate for the intended job? Has measurement uncertainty been evaluated and found appropriate?	<u>0-applications-A-</u> <u>checklist/ba-</u> p/264864
Data structure	Is it possible to use data from different sources that reflect on the problem at hand?	
Data integration	How is data from different sources integrated? Are there linkage issues that lead to dropping crucial information?	
Temporal relevance	Does the time gap between data collection and analysis cause any concern?	
Chronology of data and goal	Are the analytic findings communicated to the right persons in a timely manner?	Is your work generating information
Generalizability	Can general conclusions be derived beyond what was explicitly studied? For example, conclusions that can be applied to other products or processes.	quality?
Operationalization	Are the measured variables themselves relevant to the study goal? Are there any stated action item recommendations derived from the study?	
Communication	Are findings properly communicated to the intended audience?	

https://community.

Insights through analytics

jmp.com/t5/JMP-

Analytical Science Advances

Research Article 👌 Open Access 💿 🛈 😒

Helping reviewers assess statistical analysis: A case study from analytic methods

Ron S. Kenett 🔀, Bernard G. Francq

https://chemistry-

europe.onlinelibrary.wiley.com/doi/full/10.1002/ansa.202000159

CRM.Buzz - שיווק, חוויית לקוח, טכנולוגיה, דאטה פרופסור רון קנת - התפקיד האמיתי של מדע הנתונים

https://crm.buzz/the-real-work-of-datascience?ppplayer=e8ea7cfbee5cd2a3ac34e1db9e8dca63&ppepiso de=0215a77eba7b4356e6eff43ce769706f

https://www.youtube.com/watch?v=oHn-jXHm46c

Thank you for your attention

1 month ago

Business

<image>

RON S. KENETT | THOMAS C. REDMAN

THE REAL WORK OF

DATA SCIENCE

TURNING DATA INTO INFORMATION,

BETTER DECISIONS, AND STRONGER ORGANIZATIONS

פרופ' רון קנת, מחבר הספר THE REAL WORK OF DATA SCIENCE WILEY

Insights through analytics