
Copy r ig h t © 2012 , SAS Inst i t u t e Inc. Al l r ights reserve d .

Hi everyone, thanks so much for coming to my talk! If you’ve seen talks I’ve given at past
Discovery conferences, I’ve shared personal data projects relating to visualization of my
diet and fitness data. More recently, I’ve begun to share about some of the data projects
I’ve been involved in here at JMP.

Last year in St Louis I talked about how I use one of my favorite hidden features in JMP-
the custom regex editor in text explorer-to parse details out of build and test logs in an
effort to improve system performance and troubleshoot issues as we build JMP throughout
the day. And I presented on our crash system in poster form in Frankfurt this spring. But
quite a lot has happened since then, so I’m glad to get the chance to talk to you today
about the system that we use to collect data on software crashes and what we are doing
with the data.

If you stopped by my poster in Frankfurt or happen to work for JMP, then you already know
that I’ve become a bit obsessed with our crash data over the past few releases. Crashes
are data artifacts of the software development process and we continue to collect
information about them even once the software has been released to the field. Customer
bug and crash reports provide precious insights into our customers’ experience of JMP
product quality, and we have learned a lot from closely examining them.

1

Copy r ig h t © 2012 , SAS Inst i t u t e Inc. Al l r ights reserve d .

Today we will talk about the past, present and future of JMP’s crash data collection efforts.
We will cover some examples of how we are using this data to solve customer mystery
crashes. I also would like to take a few minutes to highlight several JMP 14 features that I
use when working with our crash data.

Like many of JMP customers, our development team is simultaneously developing new
products, new releases, maintenance releases, and receiving problem reports from
releases already out in the field. Unfortunately, we do not catch everything in testing prior
to release, and so we aim to identify those problems and offer fixes in the next available
release. Crashes are just one of these issues but they’re what I will focus on today.

2

Copy r ig h t © 2012 , SAS Inst i t u t e Inc. Al l r ights reserve d .

Just in case you are sitting there wondering what I am talking about… When I say “JMP
crash,” I am referring to when the software suddenly stops working and most of the time,
you get a message like this. Occasionally, the software crashes very hard and shuts down
too rapidly to even display this message.

You may see this for a variety of reasons:
JMP or your machine may run out of memory
There could be a flaw in JMP software
There could be a problem in the OS software or a third party software package that
interacts with JMP

That interaction could be as simple as an extension being loaded when JMP launches or
an external program being triggered to scan JMP files during install or usage

From a user perspective, it is difficult if not impossible to know which case you have
encountered, and this is why we prompt you to report all crashes so development can
investigate them. Once we understand the nature of the crash, hopefully JMP TS can
guide you to understand what happened and provide a work-around if one is available.

3

Copy r ig h t © 2012 , SAS Inst i t u t e Inc. Al l r ights reserve d .

JMP introduced an email mechanism for Mac crash reporting in JMP 12 thanks to work by
Michael Hecht, and JMP 13 added emailing for crash reports for Windows thanks to John
Schroedl.

The way it works is this: If JMP shuts down after a crash, it saves a set of crash files. Upon
the next relaunch, the software SHOULD detect the presence of the crash files, and
prompt you to email them. I say “SHOULD” because this does not always happen. Usually,
these files will contain traces of what JMP functions were running when the crash
occurred. Of course, you don’t have to opt in to sending these files, but we hope that you
will!

We also prompt for any details you can share about what you were doing before JMP
crashed.

And in case you are wondering why we ask for details when you are already sending us
your files. Sometimes, the files alone aren’t enough to help us replicate the issue. It’s ideal
to have detailed instructions for replication, but even vaguer clues like “I was closing a set
of virtually joined tables” or “dragging variables into dialog for platform X” can be helpful.

Every instance of a related crash has the potential to reveal a little more about the
conditions that led to the crash. But the quickest route to a fix is undoubtedly a clear test
case.

4

Copy r ig h t © 2012 , SAS Inst i t u t e Inc. Al l r ights reserve d .

The goals of our crash reporting system are simple-first, we want to be able to detect and
solve novel crashes as soon as possible. We use the system internally in the hopes of
receiving reports early in development. If we characterize a crash early, we may be able to
fix it before a customer ever encounters it. Regrettably, novel crashes do get reported
post-release, and we aim to fix them in the next available release.

So finding new crashes is one goal. In the process of comparing a new report to known
crashes, we may determine that we already know about an issue and have already fixed it
in a later release. If so, we want to provide those details to a customer so that they can
update JMP to get the fix. For example, if you are working in JMP 13.0 and encounter a
known crash was fixed in 13.2 or 14.0, JMP technical support can share that information
after you report it.

We also appreciate the data we receive about the relative prevalence of different crashes.
We expect to see crashes in the commonly used areas of the product reported more often.
These may be the easiest to solve because the more people who report them, the more
likely we are to eventually get that key detail that leads to a replication case. It is harder to
solve a rare crash, but we still strive to do so if possible. We know that even rarely
reported crashes are disrupting some customers’ work.

5

Copy r ig h t © 2012 , SAS Inst i t u t e Inc. Al l r ights reserve d .

I wanted to give you a little detail about how we handle crash reports.

We’re focusing on crashes here, but of course they are only one of the problems our
customers experience. Like many companies, we use a centralized system for handling all
customer issues. A JMP team within SAS technical support works with customers who call
or email, and tries to identify the problem.

1) Known issue,  the TS team member gives fix release or a workaround.
2) Novel issue  can replicate the problem  failure report for development.
3) Novel issue  can’t replicate the problem  provide details to development, hoping
they can replicate the problem and enter a new failure report.

Prior to adding automatic crash detection features, software crash reports flowed through
the same workflow. A customer indicated they had a crash, the TS team member told them
where to find the files on their system, and directed them to email the files back to the
track. Hopefully the customer/team member/developer could replicate the issue, determine
the root cause, offer a work-around, and enter a new failure report to be addressed in the
next appropriate release. But we didn’t get a lot of reports, maybe only a handful a week.
Once the release with crash automation launched, we still received some reports the old
way from direct interactions with a TS team member, but more reports began to come in
via email.

6

Copy r ig h t © 2012 , SAS Inst i t u t e Inc. Al l r ights reserve d .

Over time, via collaboration between devops and development, we developed the following
pipeline to handle crash data received via this email-based mechanism.

In order to process the crashes quickly, we needed to know that they had arrived. We don’t
own the mission critical database underlying our technical support system so querying it
directly was out of the question. We worked with IT to get an hourly feed of all JMP
product tracks that had changed within the last 24 hours, and added any new or changed
tracks to a list to process.

The system curled the text of the tracks to check for crash file attachments, and if so,
copied the file to a location where they could be processed in hourly batches.

We added basic reporting into the process-an email back to the track with the symbolized
stack in a text file that provided some details about the crash, and some info about the
crash.

7

Copy r ig h t © 2012 , SAS Inst i t u t e Inc. Al l r ights reserve d . 8

Copy r ig h t © 2012 , SAS Inst i t u t e Inc. Al l r ights reserve d .

I would like to share some of the features in JMP that have been especially helpful to me
when working with our crash data over the past several versions.

Initially when I got interested in exploring our crash data, I needed to figure out how to get
at it, as it was stored in a SQL Server database. I don’t write SQL, but I wanted the control
to create my own tables without needing to go to the database admin every time I wanted
something different. Fortunately, I knew that JMP had a database Query Builder so I
learned how to use it and figured out how to add post-query scripts to further manipulate
my tables.

I used Query Builder interactively to explore the content of the various tables in the
schema and figure out which ones I needed to retrieve and set up the correct joins. Later,
when I wanted to automate the data pull, I copied the Query Builder script into my master
script.

9

Copy r ig h t © 2012 , SAS Inst i t u t e Inc. Al l r ights reserve d .

Of course, when I initially began to explore this data, I used Graph Builder to look at trends
over time. Here is one view of our early crash data, showing how launching JMP 12 with
Mac crash automation increased the number of crashes reported by customers-and how
we were impacted by one OS-specific issue when El Capitan launched. We expected to
see customer crash reports rise when we introduced automation-but we didn’t expect this
other big jump in reports. Although we had tested with El Capitan beta releases, we and
other applications were surprised by a last minute windowing feature in the production
release. In JMP, a very common action-maximizing windows using the green button-
caused JMP to crash immediately. We released a fix in 12.2.1, but it’s been our most
prevalent crash in the database.

10

Copy r ig h t © 2012 , SAS Inst i t u t e Inc. Al l r ights reserve d .

Not surprisingly, one of my earliest graphs of our Mac crash data by prevalence showed
that the most common crash signatures were the El Capitan crashes-the super prevalent
one I mentioned earlier and a related issue. Fortunately, we had a clear direction for
customers to update to the release where these common crashes were fixed-12.2.

Here I used the stacked bars by release in Graph Builder and a data filter to restrict the
timeframe and OS.

11

Copy r ig h t © 2012 , SAS Inst i t u t e Inc. Al l r ights reserve d .

I also like treemaps for visualizing the whole set of crashes by prevalence. This treemap
shows what was left after removing the top 10 most prevalent crashes. After a year or so
of data collection, nearly 70% of Mac customer crash reports were connected to known
software defect reports. But removing the top 10 prevalent crashes left a sea (over 200) of
smaller-N cases to investigate. With less data on each one, we had less of a chance that a
customer would have given a helpful tip that would let us replicate the problem. But we
knew customers were encountering these issues and they needed to be fixed.

I began to use prevalence information to prioritize sets of cold cases to send to developers
to investigate, in the hopes that we could find a reproducible test case or match the
problem up with a known issue we had found in testing. I worked with a student to run
crashes found during development through the system, in the hopes of matching up known
crashes with customer mystery crashes.

12

Copy r ig h t © 2012 , SAS Inst i t u t e Inc. Al l r ights reserve d .

During this timeframe, development added emails for Windows crash reporting, and this
definitely increased the number of reports we received as we have more JMP customers
running on Windows than the Mac. This enabled us to connect more defects to crash
signatures.

You may be interested to know that JMP crashes don’t always manifest the same-or
manifest at all-on both hosts. Some crashes that occur on both hosts, and some are host
specific. This is why we try crash cases and their fixes on both hosts.

13

Copy r ig h t © 2012 , SAS Inst i t u t e Inc. Al l r ights reserve d .

I used Graph Builder not only to look at aggregated crash data, but to look at and
understand the path crashes take through JMP code using parallel plots. I believe these
were actually introduced in JMP 13, but a fix I got in JMP 14-truncated labels-made them
much nicer for visualizing crash paths.

Our basic crash matching looks at the very last function called by JMP before it crashed.
However, there are cases where that simple approach doesn’t work as well.

For example, on the left, JMP ends at the same function before it crashes, but takes two
completely different paths to get there and different fixes might be required. On the right is
a case that is even more confusing. Not only are there multiple paths diverging from a
single top frame, but they overlap to some extent and are associated with different
software problem reports.

As our database grew, we needed a better way to compare crash paths and automate
those comparisons.

14

Copy r ig h t © 2012 , SAS Inst i t u t e Inc. Al l r ights reserve d .

Looking at a path diagrams on a case by case basis was helpful, but we needed a quicker
way to screen new crashes against other crashes in the database so I worked with
developers to get recommendations for a crash scoring function.

We began scoring crashes against one another by comparing the functions at matching
positions in the crash stack and penalizing non-matches. All results that meet a specific
threshold are saved in a database table. Scores get recalculated hourly as new crashes
come in.

If a crash signature is identical to a known signature attached to a failure report, and is in
the right release range, we can conclude with pretty high confidence that they are
describing the same issue.

However, if a crash has no low-scoring matches, we start investigating other nearby
frames in the stack, searching for other crash signatures that match those, and sending
the details to a developer to investigate, and possibly to open a new bug report.

15

Copy r ig h t © 2012 , SAS Inst i t u t e Inc. Al l r ights reserve d .

As I built up a library of queries, tables and graphs during the JMP 14 development cycle,
it made a lot of sense to organize them within a JMP 14 project. I could bookmark the files
in the folder and open or close them as needed. I could drag and drop tables and graphs
to create the layout I needed. And I had a script that drove the creation of the contents of
the project-including query builder data pulls from our crash system and our defects
database, table manipulation steps, and inserting JMP scripts into tables. My goal was to
be able to run the script to get a new cut of data whenever I needed it. We have batches of
crashes processing hourly, so at any given moment, I might want to refresh the data to get
the latest set.

16

Copy r ig h t © 2012 , SAS Inst i t u t e Inc. Al l r ights reserve d .

One of the steps in my script inserted live links into the data table using the new Event
handler column property added in JMP 14. Using this property, you can define actions to
happen when clicking on a cell, such as running a script, or opening a webpage via a
customized link.

With this column property, I could use a formula to create the link and display whatever
text I wanted in the cell. I used it to create links out to technical support tracks and our
software defects reporting system, which made it easier to move from my JMP tables into
other systems that held details that I needed to investigate crashes.

17

Copy r ig h t © 2012 , SAS Inst i t u t e Inc. Al l r ights reserve d . 18

Copy r ig h t © 2012 , SAS Inst i t u t e Inc. Al l r ights reserve d .

We will still need to support the existing email based system for older versions, but our
new release will allow customers to provide details and upload the crash by
communicating with a web API on a listening server. The customer will be able to opt into
working with a support team member by providing their email, but they will have the option
to submit their reports anonymously. We find that many customers are willing to share
information about their crashes, but don’t really want the in-depth follow up of working with
JMP TS. We’d rather get the crash report than not, and are hoping the anonymous report
will generate more responses.

We are also changing the way we report results. If we’re allowing anonymous reports, for
those cases there will be no JMP TS track to report back to. We will now be processing the
reports and delivering results not back to the support system but into a reporting system
development maintains. If a support track is requested, then we will email a link to our
system back to the track.

I have been working with the JMP developers who created the server based system and a
developer on my team (Myron) who has been writing our crash tracking web system to
create an interface that can walk team members through the most common tasks that we
are doing when investigating a new track.

19

Copy r ig h t © 2012 , SAS Inst i t u t e Inc. Al l r ights reserve d .

For our next release, development has revised the mechanism by which customers send
crash details. While email was a good way to get started, it had disadvantages, primarily
email client compatibility issues-e.g., Outlook on the Mac, Windows 10. If you did have a
Windows configuration that worked, sending a file would tie up JMP and Outlook till the
email was sent.
The most visible change to you will be that for JMP 15, you will no longer be prompted to
send us an email, but instead if you crash, you should see a dialog like this.

As you can see, in JMP 15 you will have the option in JMP 15 to submit a crash report
anonymously. If you don’t specify your email address, your report will not go to JMP
technical support or open a track. Please, please send in your crashes whenever you can!
We really do use the data to try to improve the stability of the product and appreciate
everything you can share about what you were doing when JMP crashed. If you can share
anything about what you might have been doing when JMP crashed, that will be very
helpful to us, even if you don’t have a list of all the steps you took on the way to the crash.

We hope this will encourage customers who don’t want to follow up with a TS team
member to send their crash files anyway. But it does have repercussions for us internally
and the way that we investigate and track crashes. We will no longer have the technical
support system to store details of ongoing crashes and their investigations.

20

Copy r ig h t © 2012 , SAS Inst i t u t e Inc. Al l r ights reserve d .

To support this new approach, a developer on my team, Myron Chandler, has created an
internal web system for monitoring, triaging and investigating new customer crashes. It
makes use of all that we have learned while looking at our crash data in JMP for the past
several years and provides us an interface for tracking data on internal and external
crashes.

21

Copy r ig h t © 2012 , SAS Inst i t u t e Inc. Al l r ights reserve d .

I hope I’ve accomplished two main things in this talk today: 1) given you an idea of what
we do with crash data we ask you to share and 2) shown you that JMP has been an
integral part of what we do with the data.

22

