

MASON CHEN BLACK BELT, STANFORD OHS 1st Place Best Contributed Paper, 2018 JMP Discovery Summit, CARY NC

Project Scope and Presentation Flow

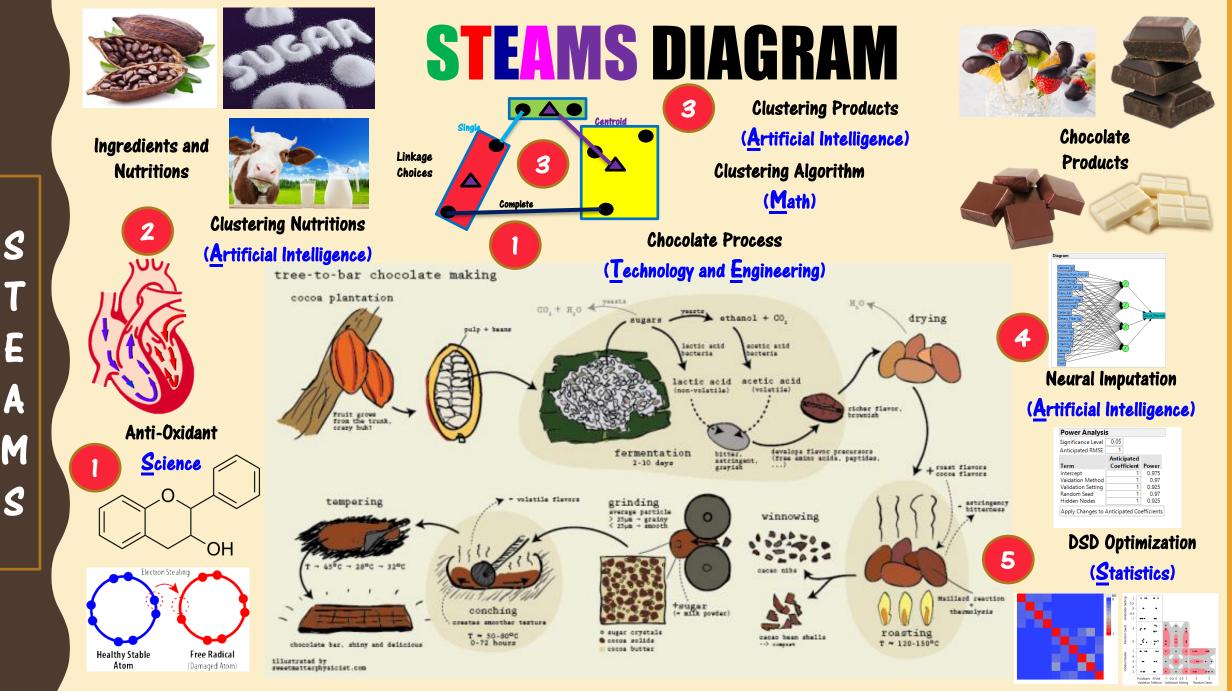
- Many people like chocolate, but have some concerns that chocolate is unhealthy.
- Some people who have heart diseases might need to eat chocolate, but do not know which one to eat.

1. Anti-Oxidant Science Literature Research

> 3. Clustering Chocolate Types

2. Clustering Nutritions & Science 4. Missing Value Neural Imputation of Cocoa%

5. DSD Optimization of Neural Setting



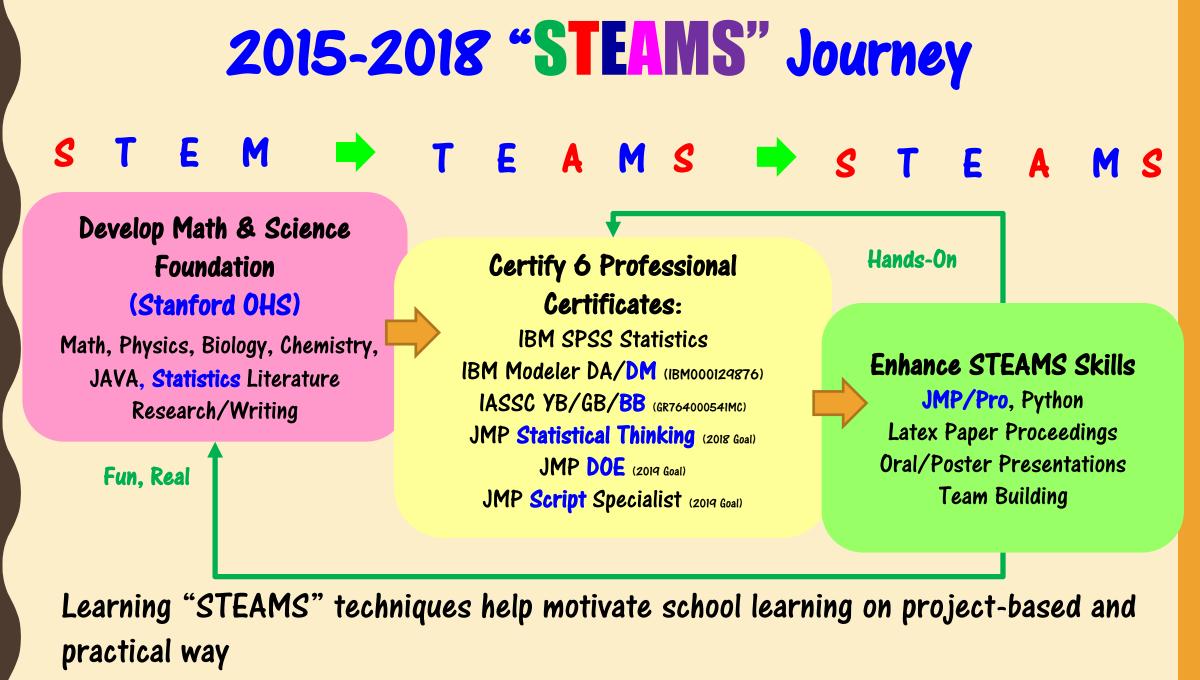
Mason C., "STEAMS" Methodology of Conducting Chocolate Science Research", submitted to NSTA STEM Expo

S

E

A

S



S T E A M S

Global Vision Leadership: 2017-2018 Conferences

S

T

E

A

M

S

JMP13 >> Analyze >> Fit Y by X >> Nonpar Density

Mason C., (2018 July) "Multivariate Statistics of Antioxidant Chocolate", SMS IWSM Bristol Proceedings, Vol 2 37-40

IS EATING CHOCOLATE UNHEALTHY?

Chocolate has not been proven harmful.

E

N

GI

N

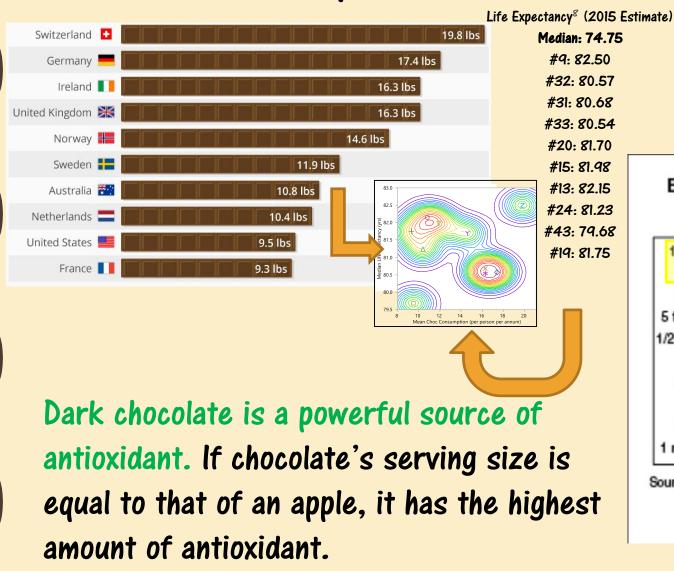
E

E

RI

N

G



JMP13 >> Analyze >> Fit Y by X >> Nonpar Density

Anti-Oxidant Capacity/gram

Estimates of Antioxidant Capacity for Selected Foods (micromole TE per household measure and grams)

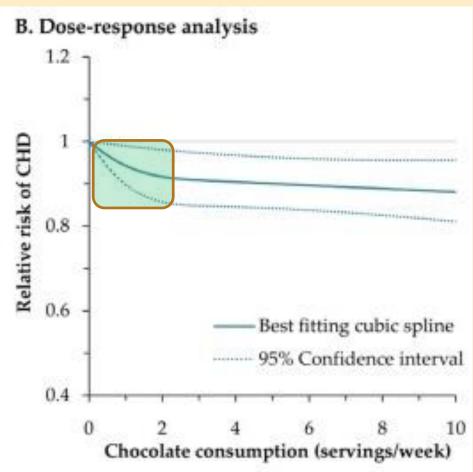
(2000	4	000	6000
1 sm, 149 g	Apple, Red Delicious, w		6370	
1 oz, 28 g	Chocolate, Dark			5903
1/2 c, 87 g	Plums, dried			5700
5 fl oz, 147 g	Wine, red		ł	5693
1/2 med, 60 g	Artichokes, Ocean Mist	, boiled	5	650
1 oz, 28 g	Pecans		5023	
1/2 c, 74 g	Blueberries, fresh		4848	
1 oz, 28 g	Walnuts, English	3791		
1/2 c, 83 g	Strawberries, sliced	2969		
1 med, 114 g	Sweet potato, baked	2411		

Source: Calculated from Oxygen Radical Absorbance Capacity of Selected Foods, 2007 USDA-Agricultural Research Service (www.ars.usda.gov/nutrientdata/ORAC)

CHOCOLATE & ATRIAL FIBRILLATION (AF)

Lower **Cardiovascular Heart Disease** (CHD) risk if taking 2 Chocolate servings per week (1 serving = 30 g)

- Chocolate may be inversely associated with AF
- Dark chocolate may be a healthy snacking option
- AF = Atrial Fibrillation (a cardiovascular disease)
- Next, how Chocolate can reduce CHD risk and AF associated cardiovascular disease



https://heart.bmj.com/content/103/15/1163 https://www.bmj.com/content/343/bmj.d4488

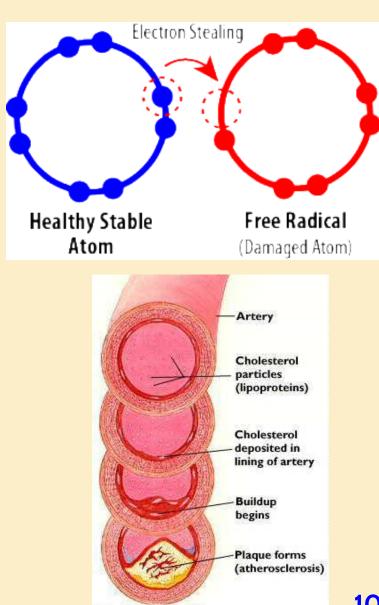
FLAVONOIDS SCIENCE & STRUCTURE

- Flavonoids are the most abundant polyphenols in human diet that have antioxidant properties.
- Flavonoids have the general structure of a 15- carbon skeleton C6-C3-C6.
 - Consists of two phenyl rings (A and B) and a heterocyclic ring (C).

- There are seven different types of flavonoids based on its chemical structure:
 - Flavones, flavanol, flavanones, isoflavones, anthocyanidins, chalcones, catechins
- Chocolate flavonoids are flavanols which can promote healthy blood flow from head to toe.

FREE RADICALS AND ANTIOXIDANTS

- Free radicals are atoms with odd number of electrons
 - Antioxidants reduce free radical formation
 - Reactive free radicals causes cells mal-function
 - Excess free radicals damages blood vessel
- After the oxidation of free radicals, LDL (Low-density Lipoprotein) can cause CVD (Cardiovascular Disease)
 - The oxidized components attract macrophages which absorb & deposit Cholesterol

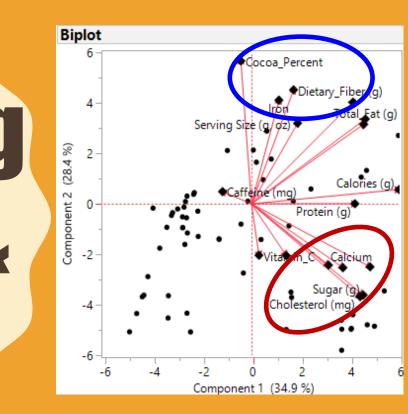


DARK CHOCOLATE LITERATURE RESEARCH

- Benefits:
 - -A lot of soluble fiber
 - A lot of minerals: iron, magnesium, copper, manganese, potassium, phosphorus, zinc, selenium
 - Powerful source of antioxidant
 - Improve blood flow and lower blood pressure
 - Increases HDL (good cholesterol) and decreases LDL (bad cholesterol)
 - -Lower risk of cardiovascular disease (CVD)
 - Improve brain function¹
- Concerns:
 - Causes migraines
 - Increases chance of kidney stones
 - Side effects from caffeine such as irregular heartbeat

(1) JMP 13 >> Analyze >> Distribution

(3) JMP 13 >> Analyze >> Clustering >> Cluster Variables



(2) JMP 13 >> Analyze >> Multivariate Methods >> Multivariate

2. Clustering Nutritions & Science

(4) JMP 13 >> Analyze >> Multivariate
Methods >> Principle Components >> Bi-Plot

Mason C., (2018 July), "Choose Healthy Chocolate", IEOM Europe Paris Proceedings, 434-441

(1) CHOCOLATE NUTRITION DISTRIBUTION

60+ Chocolate nutrition data collected from "Target" store.

S

T

A

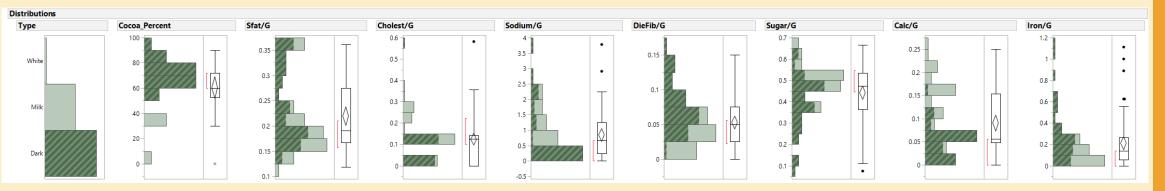
S

C

S

JMP 13 >> Analyze >> Distribution

The quantities of the eight most critical ingredients were analyzed.



Most Dark Chocolate (Qualitative Clustering Criteria) has:

- 1st Cluster: higher Cocoa percent, Dietary Fiber and Iron
- 2nd Cluster: lower Cholesterol, Calcium, and Sugar

Chocolate Product Nutrition data has indicated that Dark Chocolate is healthier than the Milk and White Chocolate

(2) DARK CHOCOLATE CORRELATION

• 1st Cluster: Sugar and Cocoa_Percent have a

negative correlation of -0.9162.

• 2nd Cluster: Dietary Fiber and Iron have a

positive correlation of 0.7722.

Any other better way to cluster nutritions?

A 100 gram bar of dark chocolate with 70-85% cocoa contains (1):

• 11 grams of fiber.

- 67% of the RDA for Iron.
- 58% of the RDA for Magnesium.
- 89% of the RDA for Copper.
- 98% of the RDA for Manganese.

• It also has plenty of potassium, phosphorus, zinc and selenium.

Correlation	S	Pair-Wi	ise Pearson Co	rrelation					
	Cocoa_Percent	Sfat/G_1	Cholest/G_1 S	odium/G_1 [DieFib/G_1	Sugar/G_1	Calc/G_1	Iron/G_1	
Cocoa_Percent	1.0000	0.5291	-0.3114	-0.0583	0.5482	- <mark>0.9162</mark>	0.2625	0.4597	JM
Sfat/G_1	0.5291	1.0000	-0.1980	0.0184	0.0341	-0.7068	0.4161	0.0687	>>
Cholest/G_1	-0.3114	-0.1980	1.0000	0.0302	-0.3666	0.3333	0.1732	-0.3304	
Sodium/G_1	-0.0583	0.0184	0.0302	1.0000	-0.1344	0.0462	0.1667	-0.1862	M
DieFib/G_1	0.5482	0.0341	-0.3666	-0.1344	1.0000	-0.5804	-0.0207	0.7722	M
Sugar/G_1	-0.9162	-0.7068	0.3333	0.0462	-0.5804	1.0000	-0.3696	-0.4669	
Calc/G_1	0.2625	0.4161	0.1732	0.1667	-0.0207	-0.3696	1.0000	-0.1037	
Iron/G_1	0.4597	0.0687	-0.3304	-0.1862	0.7722	-0.4669	-0.1037	1.0000	

JMP 13 >> Analyze >> Multivariate Methods >> Multivariate

14

JMP 13 >> Analyze >> Clustering >> Cluster Variables

					188		
- : 333							
	88 88					8	
							1122000
		0.000	1				100.000.000

SC

E

N

CE

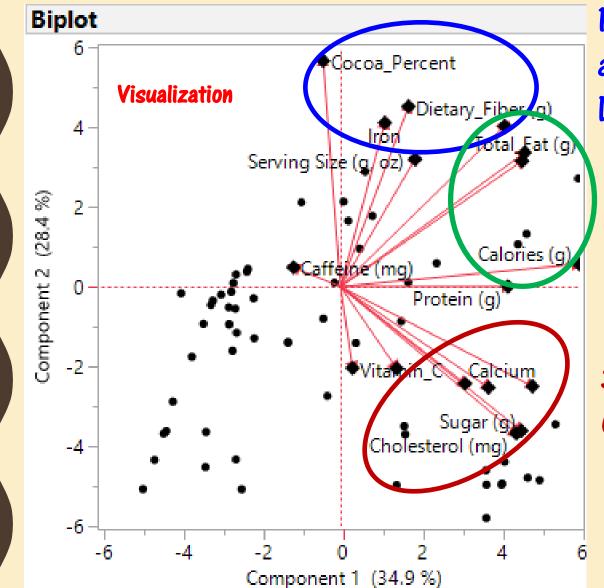
8

AI

Cluste	r Members	Signal	Noise S-	N Ratio
		RSquare with	RSquare with	1-RSquare
Cluster	Members	Own Cluster	Next Closest	Ratio
1	Calories (g)	0.789	0.314	0.308
1	Calories_from_Fat (g)	0.976	0.456	0.044
1	Total_Fat (g)	0.977	0.426	0.04
1	Saturated_Fat (g)	0.935	0.361	0.101
2	Cocoa_Percent	0.742	0.366	0.406
2	Cholesterol (mg)	0.811	0.387	0.309
2	Vitamin_A	0.505	0.126	0.566
2	Vitamin C	0.412	0.016	0.598
2	Calcium	0.726	0.079	0.297
3	Sodium (mg)	0.345	0.013	0.664
3	Carbs (g)	0.876	0.185	0.152
3	Sugar (g)	0.874	0.416	0.216
4	Dietary Fiber (g)	0.888	0.403	0.187
4	Protein (g)	0.73	0.358	0.421
4	Iron	0.803	0.269	0.269

Clustering Nutritions can interpret the relevant Chocolate Science insight well: Cluster 1: the higher the saturated fat, the higher the total fat, and the higher the calories. Cluster 2: Calcium/Cholesterol, and Cocoa percent have a negative correlation. Cluster 3: the higher the sugar, the higher the carbohydrates. Cluster 4: Iron and dietary fiber are positively correlated.

(4) Principle Component Bi-Plot



M

A

H

B

Al

1st Cluster: Cocoa Percent, Dietary Fiber, and Iron are near each other (Higher for Dark Chocolate)

2nd Cluster: Total Fat, Saturated Fat, and Calories

3rd Cluster: Calcium, Sugar, and Cholesterol are near each other (Higher for Milk/White Chocolate)

JMP 13 >> Analyze >> Multivariate Methods >> Principle Components >> Bi-Plot

Comparing Four Clustering Methods

Platform	Criteria	1st Cluster	2nd Cluster	3rd Cluster	4th Cluster
Interactive Distribution	Qualitative	Cocoa%, Dietary Fiber, Iron	Cholestrol, Sugar		
Multivariate Correlation	Quantitative	Dietary Fiber and Iron	Cocoa% and Sugar		
Clustering Variables	Quantitative	Saturated Fat, Total Fat, Calories	Cholesterol, Calcium, Cocoa%	Sugar, Carbohydrates	Iron, Dietary Fiber
Principle Component Bi-Plot	Quantitative	Cocoa %, Dietary Fiber, Iron	Saturated Fat, Total Fat, Calories	Calcium, Sugar, Cholesterol	

- Four different clustering methods show similar clustering patterns
- Clustering "Statistics and Engineering" results match Chocolate "Science and Technology" Literature Research well (STEAMS).

JMP 13 >> Analyze >> Clustering >> Hierarchical Cluster JMP 13 >> Analyze >> Distribution

JMP 13 >> Analyze >> Distribution

JMP 13 >> Analyze >> Clustering >> Hierarchical Cluster >> Column Summary

3. Clustering Chocolate Types

JMP 13 >> Analyze >> Clustering >> Hierarchical Cluster >> Clustering Distance Method

> JMP 13 >> Analyze >> Clustering >> Hierarchical Cluster >> Constellation Plot

JMP 13 >> Analyze >> Multivariate Methods >> Principle Components >> Eigenvalues

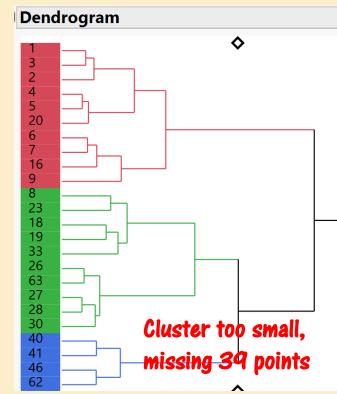
Mason C., (2018 Dec.), "Statistics Application on the Study of Chocolate Science with Heart Disease", ASA SDSS Proceeding

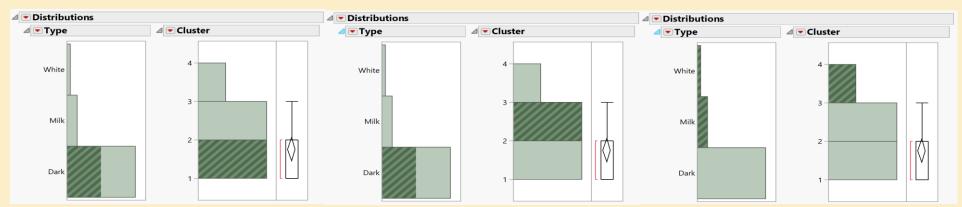
Al

CLUSTERING PRODUCTS

Objective: find a way to identify healthy chocolate products for Heart Disease patients.

- Use hierarchical clustering to cluster chocolate products
- All Milk and white chocolate form the third cluster while dark chocolate split between the first and second cluster.
- Why are there two clusters for dark chocolate (why not one cluster for each Chocolate Type)?

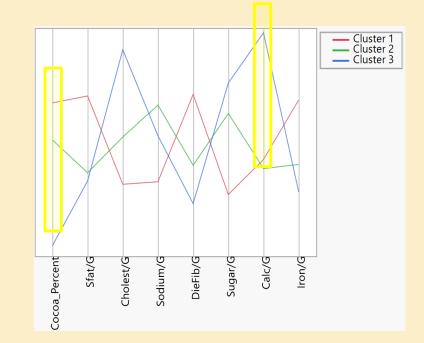




JMP 13 >> Analyze >> Clustering >> Hierarchical Cluster JMP 13 >> Analyze >> Distribution

PRINCIPLE CLUSTERING DECIDING FACTORS

JMP 13 >> Analyze >> Clustering >> Hierarchical Cluster >> Column Summary



A

8

E

C

H

N

0

L

0

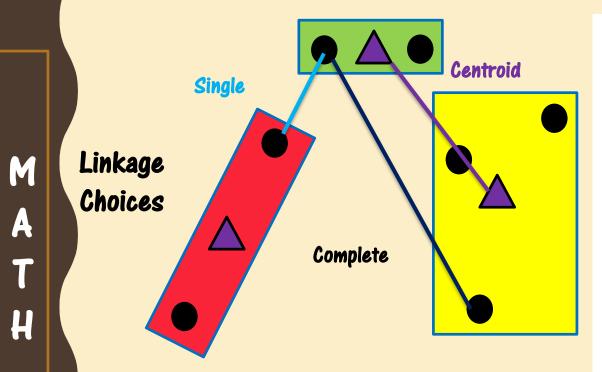
G

Y

Column Summary Column **RSquare** .2 .4 .6 .8 Cocoa Percent 0.//88 Sfat/G 0.4908 Cholest/G 0.6978 Sodium/G 0.3949 DieFib/G 0.5788 Sugar/G 0.6642 Calc/G 0.7727 0.4351 Iron/G

- 1st Cluster: Dark Chocolate, High Cocoa%, and Low Calcium, Most Healthy?
- 2nd Cluster: Dark Chocolate, Medium Cocoa%, and Low Calcium.
- 3rd Cluster: Milk/White Chocolate, Low Cocoa%, and High Calcium

CLUSTERING DISTANCE METHODS Under States of the second states of the se



Clustering patterns dependent on the cluster number observations, cluster variance, and outlier Average Linkage Distance for the average linkage cluster method is:

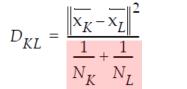
$$D_{KL} = \sum_{i \in C_K} \sum_{j \in C_L} \frac{d(x_i, x_j)}{N_K N_L}$$
 Average

Centroid Method Distance for the centroid method of clustering is:

 $D_{KL} = \left\| \overline{\mathbf{x}_K} - \overline{\mathbf{x}_L} \right\|^2$

Ward's Distance for Ward's method is:

Center-Center



ANOVA (MS)

Single Linkage Distance for the single linkage cluster method is:

$$D_{KL} = \min_{i \in C_K} \min_{j \in C_L} d(x_i,$$

Complete Linkage Distance for the Complete linkage cluster method is:

 $D_{KL} = \max_{i \in C_K} \max_{j \in C_L} d(x_i, x_j)$

Maximum

Selecting DISTANCE METHODS

M

A

H

	Size/ Variance	Outliers	Shape	
Average	Smaller			
Centroid		Robust		
Ward	Smaller	Sensitive		
Single	Larger		Irregular/ Elongated	
Complete	Smaller	Moderate		

Depending on the data distribution, selecting an appropriate Clustering Distance algorithm is critical to Clustering Pattern Analysis

Centroid

WARD VS SINGLE METHOD (10 Clusters)

Ward (Join Smaller Observations)

Al

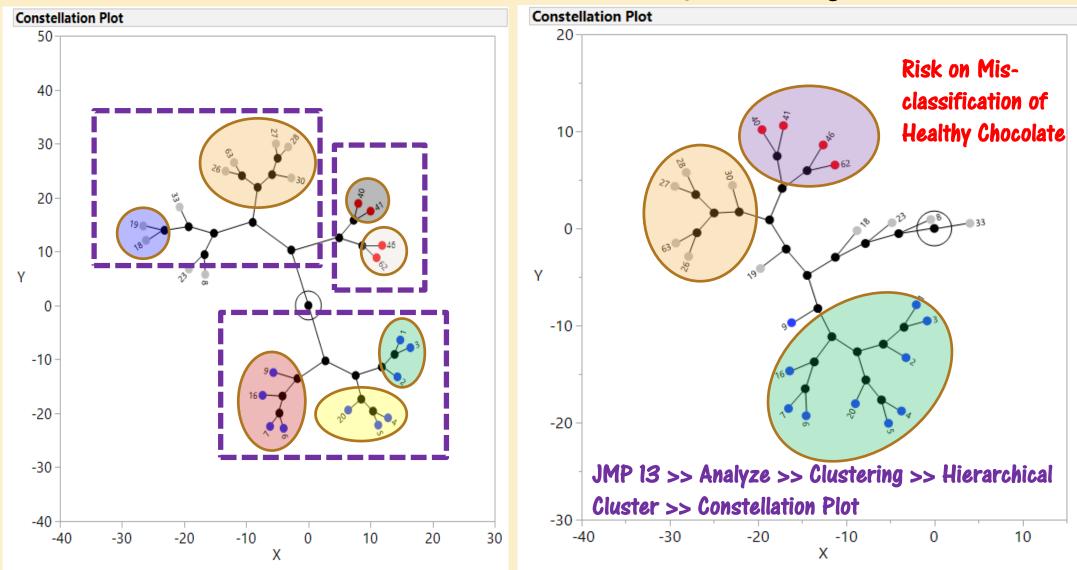
8

M

A

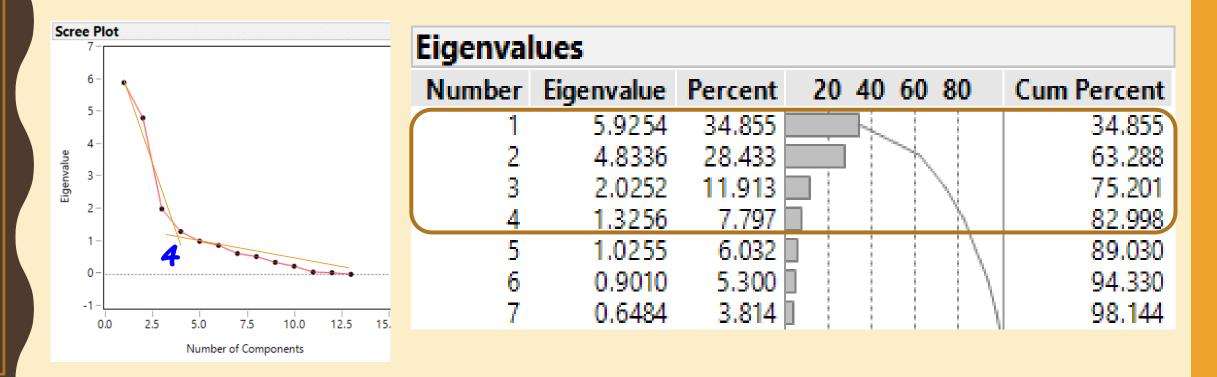
H

Single (Join Larger Variances)



DETERMINE NUMBER OF CLUSTERS

Clustering pattern result is highly dependent on the number of clusters



From both the scree plot and PCA eigenvalues (80% Pareto), we can pick 4 clusters

JMP 13 >> Analyze >> Multivariate Methods >> Principle Components >> Eigenvalues

M

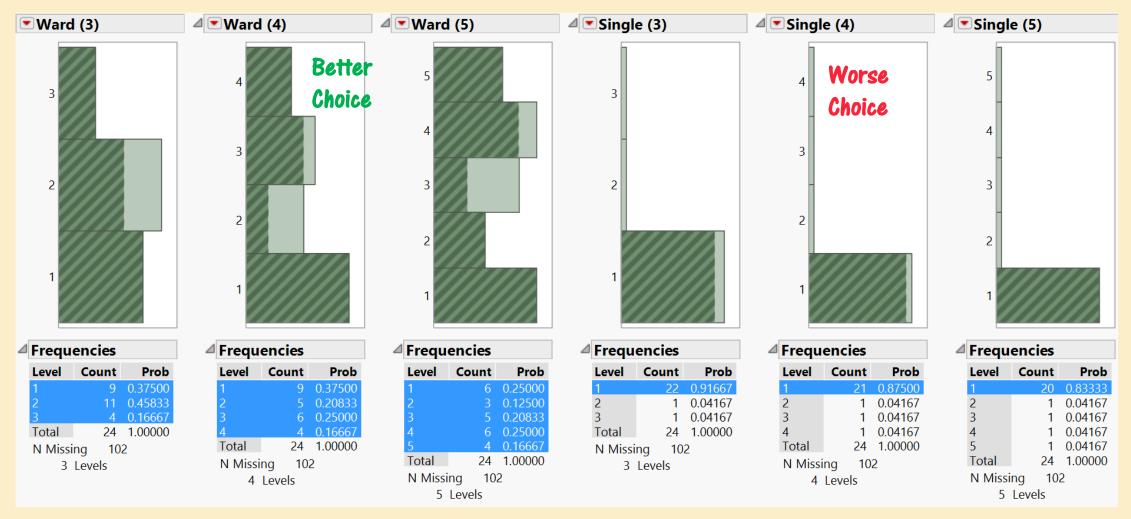
A

T

H

WARD VS SINGLE (3-5 CLUSTERS)

JMP 13 >> Analyze >> Distribution



- Single does not show any significant difference between 3, 4, or 5 clusters
- Ward clusters become more similar in size with the higher the number of clusters

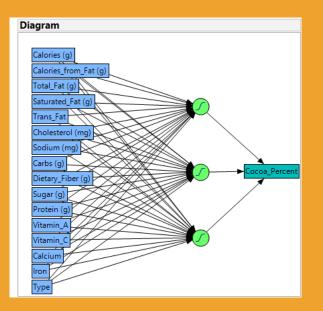
JMP 13 >> Analyze >> Clustering >> Hierarchical Cluster >> Missing Value Imputation

JMP 13 >> Analyze >> Screening >> Explore Missing Values

> JMP 13 >> Analyze >> Predictive Modeling >> Partition

4. Missing Value Neural Imputation

JMP 13 >> Analyze >> Predictive Modeling >> Neural



JMP 13 >> Analyze >> Predictive Modeling >> Neural >> Diagram

Mason C., "Neural Network Algorithm of Missing Value Imputation for Chocolate Science Research" submitted to SIAM SDM19

EXPLORE MISSING VALUESJMP 13 >> Analyze >> Screening >> Explore Missing Values

Objective: among 63 commercial chocolate products, 39 have missed the Cocoa % information (most are Milk Chocolates)

Al

8

M

A

T

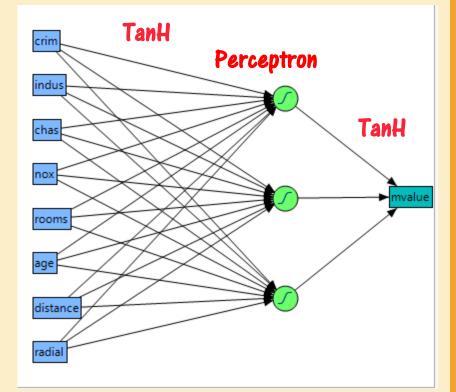
H

Missing Co				
Show only Close	y columns with missing	Column Cocoa_Percent	Number Missing 39	
Commands Missing Value Report	Number of missing values for e	ach column		
Missing Value Clustering	Hierarchical clustering of rows and columns missingness Patterns of missing values with graphical map			Any other better
Missing Value Snapshot Multivariate Normal Imputation	h row	imputatio method?		
Multivariate SVD Imputation	Imputation for wide problems u with the power-method adapte		osition	

27

JMP Neural Network Platform

- Implements a fully connected Perceptron (hidden nodes) with one layer.
- Main advantage: can efficiently model different response surfaces given enough hidden nodes and layers.
- Main disadvantage: results are not easily interpretable, since there are intermediate layers (Black Box)



Standard JMP Edition:

Al

- Only TanH activation function
- Can fit with one hidden layer.

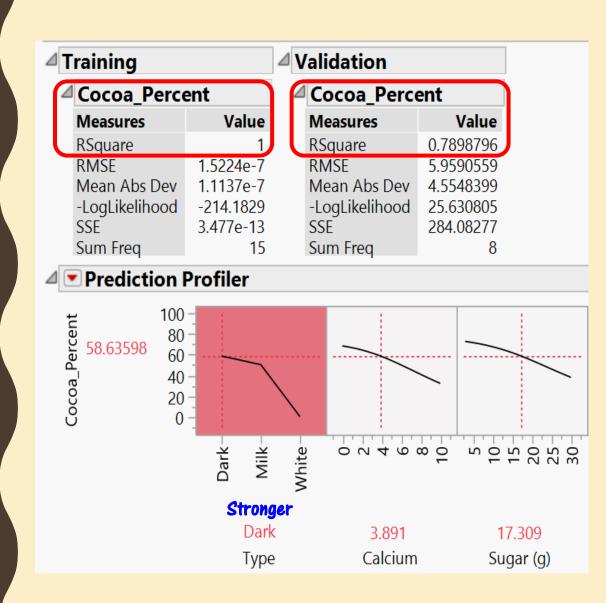
TanH The hyperbolic tangent function is a sigmoid function. TanH transforms values to be between -1 and 1, and is the centered and scaled version of the logistic function. The hyperbolic tangent function is:

 $\frac{e^{2x}-1}{e^{2x}+1}$ More Powerful Exponential Transformation than PCA Linear Transformation

where *x* is a linear combination of the X variables.

Al

MISSING VALUE - Neural Network



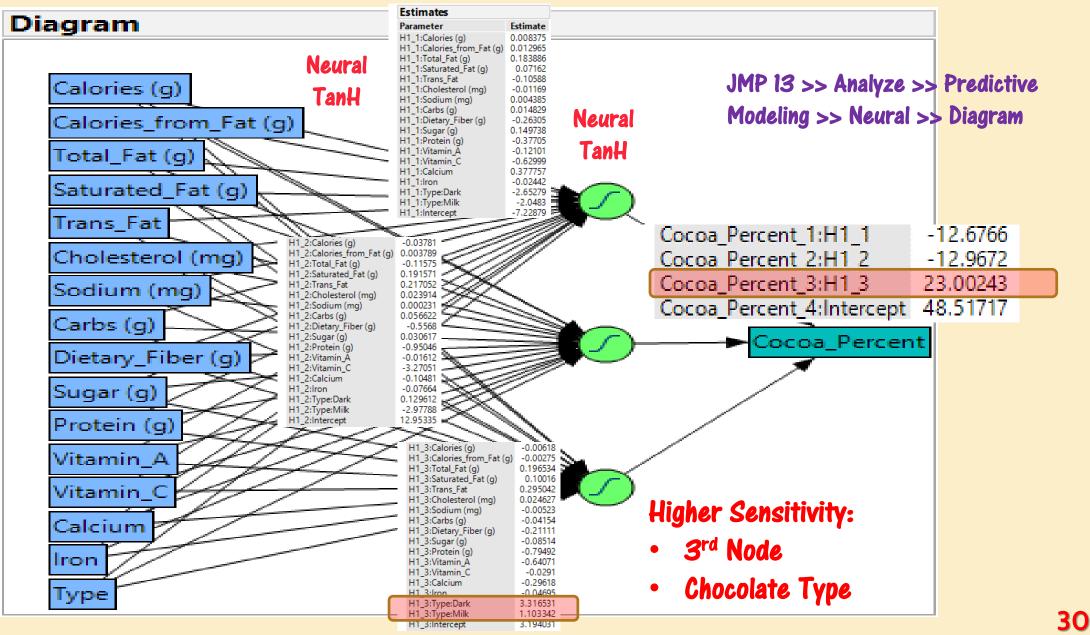
JMP 13 >> Analyze >> Predictive Modeling >> Neural

- The R-square of both Training and Validation are above 0.7.
- Though validation portion is weaker

(typical Over-fit concern for Neural).

 Chocolate Type, Calcium, and Sugar as top three predictors for predicting the Cocoa%

Neural Network- Estimates (JMP Default Setting)



JMP 13 >> DOE >> Definitive Screening Design

JMP 13 >> DOE >> Design Diagnostic >> Evaluate Design

5. DSD of Neural Setting

JMP 13 >> Analyze >> Fit Y by X

JMP 13 >> Analyze >> Distribution

JMP 13 >> Save Script >> To Data Table or To Script Window >> Edit/Save/Run Script

JMP 13 >> Analyze >> Fit Model

Mason C., "Optimize Neural Network Algorithm of Missing Value Imputation", submitted to 2019 ASA ENAR Spring Meeting

Resolve Neural Over-Fit Concern

Objective: optimize Neural settings to resolve over-fit by improving R-Square of both Training and Validation for **Cocoa Missing Imputation**

JMP Neural Validation Methods:

- Holdback: randomly divides the original data into the training and validation (holdback portion) sets.
- Kfold: divides the data into K subsets. Each K set used to validate the model fit on the rest of the data, fitting a total of K models. Chose model giving the best validation statistic. Best for small data sets (makes efficient use of limited data)

Four DOE Input Variables:

- Validation Method (Categorical)
- Validation Setting (Continuous) "Nested" under Validation Method

Design

JMP 13 >> DOE >> Definitive Screening

- Random Seed (Categorical)
- Number of Hidden Nodes (Continuous)
 Two DOE Output Responses:
- R-Square of Training Set
- R-Square of Validation Set (More Important-Neural Over-fit)

Evaluate DSD of Optimizing Neural Settings

JMP 13 >> DOE >> Design Diagnostic >> Evaluate Design

> 14 DSD Runs

Add Four Random Corner Points

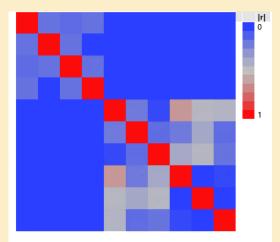
> 18 DSD Runs is safer on Power

Power Analysis					
Significance Level	0.05				
Anticipated RMSE	1				
	Anticipated				
Term	Coefficient	Power			
Intercept	1	0.913			
Vaidation Method	1	0.89			
Validation Setting	1	0.776			
Random Seed	1	0.89			
Hidden Nodes	1	0.783			

Power Test of

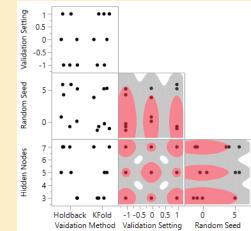
Sign (> 90%)

Significance Level	0.05		
Anticipated RMSE	1		
Term	Anticip Coeffic		Power
Intercept		1	0.975
Vaidation Method		1	0.97
Validation Setting		1	0.925
Random Seed		1	0.97
Hidden Nodes		1	0.925

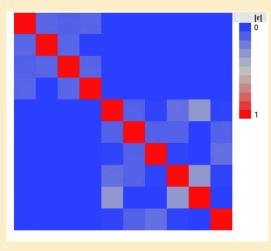


(<0.3)

Correlation of Confounding Uniformity of Prediction



Power

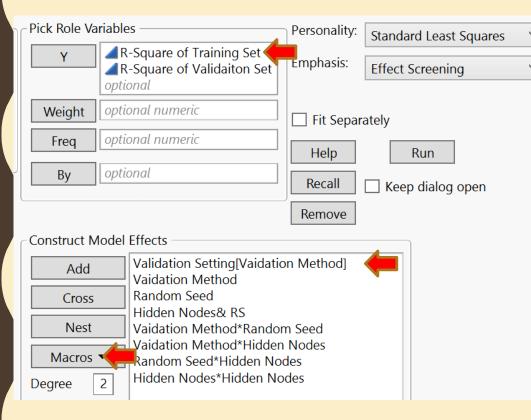


sepon Holdback KFold Vaidation Method Vaidation Setting Random Setting Ra

33

Fit Model (Nested) and Set Desirability

JMP 13 >> Analyze >> Fit Model

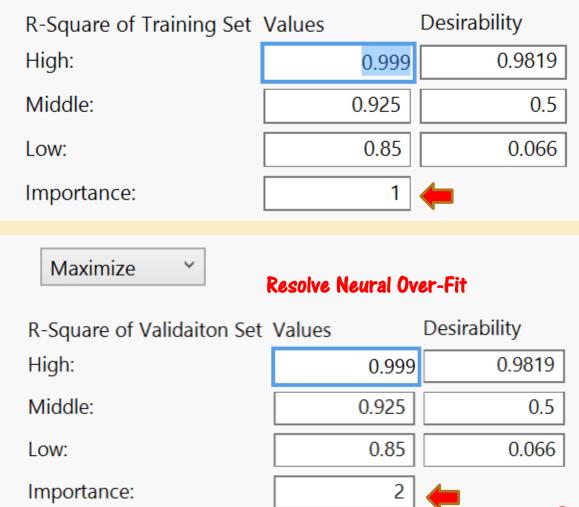


Construct Model Effects:

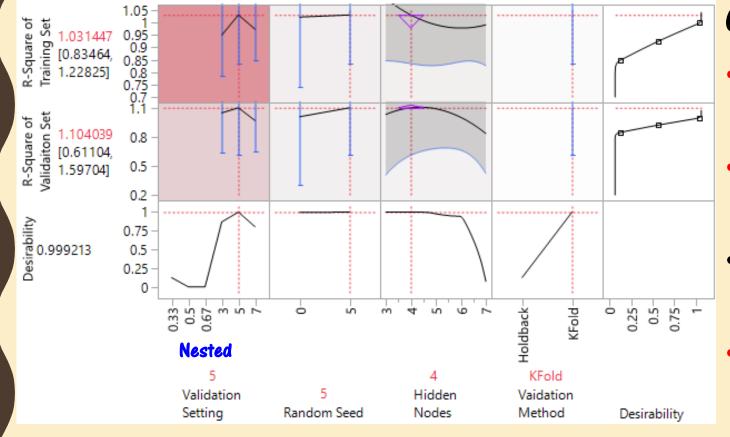
- Validation Setting is "Nested" under Validation Method
- Choose Response Surface (RS)

Maximize

V



Optimal Neural Network Setting



Future Work:

S

A

S

C

S

- R-Square > 100%, not following Normal Distribution?
- Wider Confidence Interval: Small Validation Dataset, or Outliers?

Optimal Neural Setting:

Kfold is better than Holdback (small sample size and favor validation)

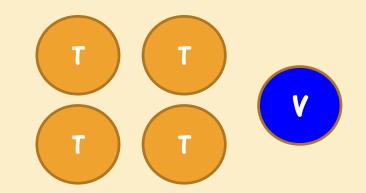
JMP 13 >> Analyze >> Fit Y by X

- 5 Kfold numbers (24/5 ~ 5 data for validation set)
- Use Random Seed= 5 to improve reproducibility
- **4 Hidden Nodes** is best (Constrained by 15 input variables for one layer)
- Achieve >99% R-Square fit on predicting Cocoa%

Understand Neural Optimization (Future Work)

Why Kfold over Holdback?

Holdback Portion = 0.2



Kfold K=5, Select the Best among 5 Models **Consider Neural Over-fit (lower Validation R-Square)**

- If K is large, small size in each K cluster, making validation
 Over-Fit concern worse
- If K is small, losing advantage of using Kfold over Holdback
- When total sample size is smaller, may prefer Kfold method with smaller K number

Coincidence with Four Hidden Nodes?

- The optimal Neural suggests four hidden nodes of transforming the 15 Input Nutrition Variables
- Section 2 Clustering Variables also suggests four clusters
- Neural related to PCA Eigen algorithm (TanH ~ Linear)?

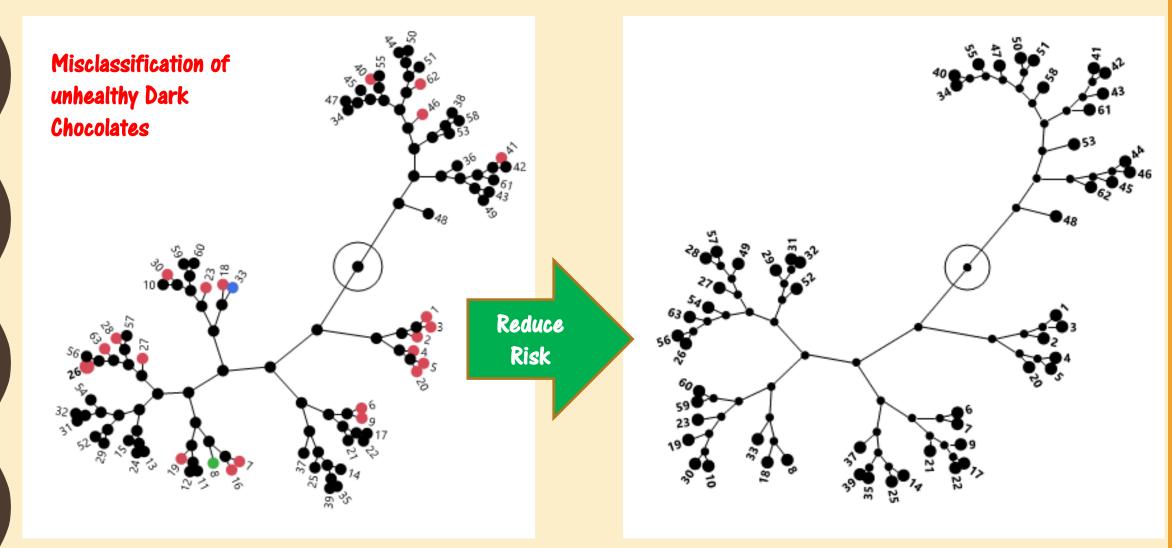
Neural Model Enhancement

JMP 13 >> Analyze >> Predictive Modeling >> Neural

E N Gl N E E RI N G

Default: Missing Value Imputation

Optimal Neural (Predicted Cocoa %)



Achievements AND FUTURE RESEARCH

Achievements:

- ✓ Adopted and Integrated "STEAMS" methodology successfully
- ✓ Learned Chocolate Products, Nutrition Anti-Oxidant Science
- \checkmark Applied Multivariate Statistics, Clustering and Neural Algorithms
- ✓ Conducted DSD optimization on Resolving Neural Overfit

Future JMP Research:

- □ Investigate "Fruit" Chocolate Type, Outlier Effect
- □ JMP Pro Partition: Bootstrap Forrest, Boosted Tree, K-Nested, Naïve Bayes
- □ JMP Pro Neural: Deep Learning, Hidden Layer Structure, Fitting Options
- Certify JMP Script Specialist

Statistics//MATH/Al Advisor: Dr. Charles Chen

40

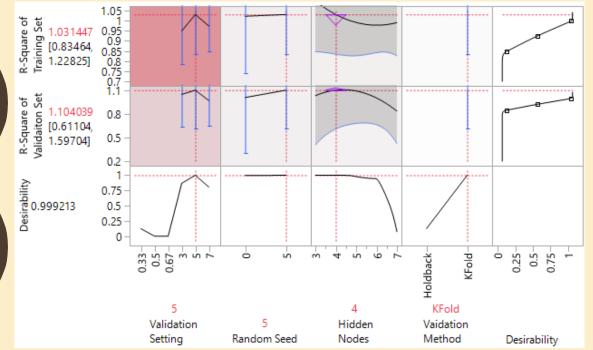
Robotics Advisor: CQE/CRE Roland

Jones

Optimize Desirability Function Importance

Optimize the Number of Hidden Nodes:

- Higher R-Square of Training Set at Nodes=3
- Higher R-Square of Validation Set at Nodes=4
- Relative Importance can impact the Optimal Setting



Importance Setting		Optimization Result	C	Optimal Net	ural Setting	S
Importance of	Importance of	Overall	Validation	Validation	Random	Hidden
Training Set	Validation Set	Desirability	Method	Setting	Seed	Nodes
1	1	0.9997	KFold	5	5	3
1	1.5	0.9997	KFold	5	5	4
1	2	0.9997	KFold	5	5	4
1.5	1	0.9997	KFold	5	5	3
1.5	1.5	0.9997	KFold	5	5	3
1.5	2	0.9997	KFold	5	5	4
2	1	0.9997	KFold	5	5	3
2	1.5	0.9997	KFold	5	5	3
2	2	0.9997	KFold	5	5	3

Conduct a 2-Factor & 3-Level Full Factorial on comparing the relative importance in (1,2) range

- Set the Desirability Function Range of (0.999, 0.95, 0.9)
- In General, the optimal result shows the similar trend:
 3 hidden nodes favor training set and 4 hidden nodes favor validation set

Little room for further improvement on setting the relative importance between Training Set and Validation Set

Document Key JMP Scripts

Partition(Y(:Cocoa_Percent),

Al

```
X(
:Type,
:Name( "Calories (g)" ),
:Name( "Calories_from_Fat (g)" ),
:Name( "Total Fat (g)" ),
:Name( "Saturated_Fat (g)" ),
:Trans Fat,
:Name( "Cholesterol (mg)" ),
:Name( "Sodium (mg)" ),
:Name( "Carbs (g)" ),
:Name( "Dietary_Fiber (g)" ),
:Name( "Sugar (g)" ),
:Name( "Protein (g)" ),
:Vitamin A,
:Vitamin C,
:Calcium,
:Iron
),
Minimum Size Split( 3 ),
Validation Portion( 0.6 ),
Split History(1),
Informative Missing( 1 ),
Column Contributions( 1 ),
Initial Splits( :Name( "Cholesterol
(mg)" ) >= 5 ),
SendToReport( Dispatch( {}, "Partition",
FrameBox, {Frame Size( 480, 56 )} ) )
);
```

Neural(Y(:Cocoa_Percent), X(:Name("Calories (g)"), :Name("Calories_from_Fat (g)"), :Name("Total_Fat (g)"), :Name("Saturated_Fat (g)"), :Trans Fat, :Name("Cholesterol (mg)"), :Name("Sodium (mg)"), :Name("Carbs (g)"), :Name("Dietary_Fiber (g)"), :Name("Sugar (g)"), :Name("Protein (g)"), :Vitamin A, :Vitamin C, :Calcium, :Iron, :Type), Validation Method("KFold", 5), Fit(NTanH(4), Diagram(1)),

JMP 13 >> Save Script >> To Data Table or To Script Window >> Edit/Save/Run Script Fit Model(Y(:Name("R-Square of Training Set"), :Name("R-Square of Validaiton Set")), Effects(:Validation Setting[:Vaidation Method], :Vaidation Method, :Random Seed, :Hidden Nodes & RS, :Vaidation Method * :Random Seed, :Vaidation Method * :Hidden Nodes, :Random Seed * :Hidden Nodes, :Hidden Nodes * :Hidden Nodes), Personality("Standard Least Squares"), Emphasis("Effect Screening"), :Name("R-Square of Training Set") << {Summary of Fit(0), Analysis of Variance(0), Lack of Fit(0), Sorted Estimates(0), Informative Missing(0), Plot Actual by Predicted(1), Plot Regression(0), Plot Residual by Predicted(1), Plot Studentized Residuals(1), Plot Effect Leverage(0), Box Cox Y Transformation(1)}, :Name("R-Square of Validaiton Set") << {Summary of Fit(0), Analysis of Variance(0), Lack of Fit(0), Sorted Estimates(0), Plot Actual by Predicted(1), Plot Regression(0), Plot Residual by Predicted(1), Plot Studentized Residuals(1), Plot Effect Leverage(0), Box Cox Y Transformation(40)}),